References

[1]
C. Anastasiou, L. Dixon, and K. Melnikov, NLO Higgs Boson Rapidity Distributions at Hadron Colliders, Nuclear Physics B - Proceedings Supplements 116, 193 (2003).
[2]
C. Anastasiou and K. Melnikov, Higgs Boson Production at Hadron Colliders in NNLO QCD, Nuclear Physics B 646, 220 (2002).
[3]
C. Anastasiou, L. Dixon, K. Melnikov, and F. Petriello, Dilepton Rapidity Distribution in the Drell-Yan Process at Next-to-Next-to-Leading Order in QCD, Physical Review Letters 91, 182002 (2003).
[4]
C. Anastasiou and A. Lazopoulos, Automatic Integral Reduction for Higher Order Perturbative Calculations, Journal of High Energy Physics 2004, 046 (2004).
[5]
C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Mastrolia, D-Dimensional Unitarity Cut Method, Physics Letters B 645, 213 (2007).
[6]
Z. Bern, L. Dixon, and D. A. Kosower, Dimensionally-Regulated Pentagon Integrals, Nuclear Physics B 412, 751 (1994).
[7]
Z. Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, Fusing Gauge Theory Tree Amplitudes Into Loop Amplitudes, Nuclear Physics B 435, 59 (1995).
[8]
Z. Bern, V. Del Duca, L. J. Dixon, and D. A. Kosower, All Non-Maximally-Helicity-Violating One-Loop Seven-Gluon Amplitudes in N=4 Super-Yang-Mills Theory, Physical Review D 71, 045006 (2005).
[9]
Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, Black Hole Binary Dynamics from the Double Copy and Effective Theory, Journal of High Energy Physics 10, 206 (2019).
[10]
Z. Bern, J. P. Gatica, E. Herrmann, A. Luna, and M. Zeng, Scalar QED as a Toy Model for Higher-Order Effects in Classical Gravitational Scattering, arXiv:2112.12243 [Gr-Qc, Physics:hep-Th] 08, 131 (2022).
[11]
J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A Fresh Approach to Numerical Computing, arXiv:1411.1607 (2015).
[12]
G. D. Birkhoff and R. E. Langer, Relativity and Modern Physics (Harvard University Press; [etc., etc.], Cambridge, 1923).
[13]
N. E. J. Bjerrum-Bohr, J. F. Donoghue, and P. Vanhove, On-Shell Techniques and Universal Results in Quantum Gravity, Journal of High Energy Physics 02, 111 (2014).
[14]
L. Blanchet and T. Damour, Radiative Gravitational Fields in General Relativity I. General Structure of the Field Outside the Source, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 320, 379 (1986).
[15]
L. Blanchet, T. Damour, and B. R. Iyer, Gravitational Waves from Inspiralling Compact Binaries: Energy Loss and Waveform to Second-Post-Newtonian Order, Physical Review D 51, 5360 (1995).
[16]
L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Reviews in Relativity 17, 2 (2014).
[17]
W. B. Bonnor and L. Rosenhead, Spherical Gravitational Waves, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 251, 233 (1959).
[18]
E. Brezin, C. Itzykson, and J. Zinn-Justin, Relativistic Balmer Formula Including Recoil Effects, Physical Review D 1, 2349 (1970).
[19]
E. I. Buchbinder and F. Cachazo, Two-Loop Amplitudes of Gluons and Octa-Cuts in N=4 Super Yang-Mills, Journal of High Energy Physics 11, 036 (2005).
[20]
A. Buonanno and T. Damour, Effective One-Body Approach to General Relativistic Two-Body Dynamics, Physical Review D 59, 084006 (1999).
[21]
A. Buonanno and T. Damour, Transition from Inspiral to Plunge in Binary Black Hole Coalescences, Physical Review D 62, 064015 (2000).
[22]
F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, 02, 181 (2020).
[23]
M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Accurate Evolutions of Orbiting Black-Hole Binaries Without Excision, Physical Review Letters 96, 111101 (2006).
[24]
S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity, Higher Education from Cambridge University Press (2019).
[25]
C. Cheung, I. Z. Rothstein, and M. P. Solon, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Physical Review Letters 121, 251101 (2018).
[26]
S. Coleman, Lectures of Sidney Coleman on Quantum Field Theory (WSP, Hackensack, 2018).
[27]
[28]
A. Cristofoli, R. Gonzo, D. A. Kosower, and D. O’Connell, Waveforms from Amplitudes, Phys. Rev. D 106, 056007 (2022).
[29]
[30]
S. Detweiler, Pulsar Timing Measurements and the Search for Gravitational Waves, The Astrophysical Journal 234, 1100 (1979).
[31]
W. D. Goldberger and I. Z. Rothstein, Effective Field Theory of Gravity for Extended Objects, Physical Review D 73, 104029 (2006).
[32]
H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics (Addison Wesley, 2002).
[33]
[34]
S. G. Hahn and R. W. Lindquist, The Two-Body Problem in Geometrodynamics, Annals of Physics 29, 304 (1964).
[35]
E. Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng, Radiative Classical Gravitational Observables at $\Mathcal{}O{}(G3̂)$ from Scattering Amplitudes, Journal of High Energy Physics 10, 148 (2021).
[36]
K. Hiida and H. Okamura, Gauge Transformation and Gravitational Potentials, Progress of Theoretical Physics 47, 1743 (1972).
[37]
G. Hobbs et al., The International Pulsar Timing Array Project: Using Pulsars as a Gravitational Wave Detector, Classical and Quantum Gravity 27, 084013 (2010).
[38]
Y. Iwasaki, Quantum Theory of Gravitation Vs. Classical Theory*): Fourth-Order Potential, Progress of Theoretical Physics 46, 1587 (1971).
[39]
G. Kalin and R. A. Porto, From Boundary Data to Bound States. Part II. Scattering Angle to Dynamical Invariants (with Twist), Journal of High Energy Physics 02, 120 (2020).
[40]
G. Kalin and R. A. Porto, From Boundary Data to Bound States, Journal of High Energy Physics 01, 072 (2020).
[41]
G. Kälin and R. A. Porto, Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics, Journal of High Energy Physics 11, 106 (2020).
[42]
[43]
D. A. Kosower, B. Maybee, and D. O’Connell, Amplitudes, Observables, and Classical Scattering, Journal of High Energy Physics 02, 137 (2019).
[44]
[45]
J. B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem, Proceedings of the American Mathematical Society 7, 48 (1956).
[46]
J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga, FORM Version 4.0, Comput. Phys. Commun. 184, 1453 (2013).
[47]
H. Lehmann, K. Symanzik, and W. Zimmermann, Zur Formulierung quantisierter Feldtheorien, Il Nuovo Cimento (1955-1965) 1, 205 (1955).
[48]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of Gravitational Waves from a Binary Black Hole Merger, Physical Review Letters 116, 061102 (2016).
[49]
B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral, Physical Review Letters 119, 161101 (2017).
[50]
R. Abbott et al., Observation of Gravitational Waves from Two Neutron Star, The Astrophysical Journal Letters 915, L5 (2021).
[51]
P. Maierhöfer and J. Usovitsch, Kira 1.2 Release Notes, arXiv:1812.01491 [Hep-Ph] (2018).
[52]
M. Maiorano, F. De Paolis, and A. A. Nucita, Principles of Gravitational-Wave Detection with Pulsar Timing Arrays, Symmetry 13, 2418 (2021).
[53]
S. Mukherjee, S. Mitra, and S. Chatterjee, Gravitational Wave Observatories May Be Able to Detect Hyperbolic Encounters of Black Holes, Monthly Notices of the Royal Astronomical Society 508, 5064 (2021).
[54]
D. Neill and I. Z. Rothstein, Classical Spacetimes from the S-matrix, Nuclear Physics B 877, 177 (2013).
[55]
P. Nogueira, Automatic Feynman Graph Generation, Journal of Computational Physics 105, 279 (1993).
[56]
K. Paton, An Algorithm for Finding a Fundamental Set of Cycles of a Graph, Communications of the ACM 12, 514 (1969).
[57]
R. A. Porto, The Effective Field Theorist’s Approach to Gravitational Dynamics, Physics Reports 633, 1 (2016).
[58]
F. Pretorius, Evolution of Binary Black-Hole Spacetimes, Physical Review Letters 95, 121101 (2005).
[59]
E. Remiddi, Differential Equations for Feynman Graph Amplitudes, Il Nuovo Cimento A (1971-1996) 110, 1435 (1997).
[60]
[61]
A. V. Smirnov and F. S. Chukharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, Computer Physics Communications 247, 106877 (2020).
[62]
M. A. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge ; New York, 2007).
[63]
R. Sturani, Effective Field Theory Methods to Model Compact Binaries, in Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas (Springer, Singapore, 2021), pp. 1–33.
[64]
G. ’t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields, Nuclear Physics B 44, 189 (1972).
[65]
K. S. Thorne, Multipole Expansions of Gravitational Radiation, Reviews of Modern Physics 52, 299 (1980).
[66]
V. Vaidya, Gravitational Spin Hamiltonians from the S Matrix, Physical Review D 91, 024017 (2015).
[67]
J. A. M. Vermaseren, New Features of FORM, (2000).
[68]
S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972).