References
[1]
C.
Anastasiou, L. Dixon, and K. Melnikov, NLO
Higgs Boson Rapidity Distributions at Hadron Colliders,
Nuclear Physics B - Proceedings Supplements 116, 193
(2003).
[2]
C.
Anastasiou and K. Melnikov, Higgs Boson
Production at Hadron Colliders in NNLO QCD,
Nuclear Physics B 646, 220 (2002).
[3]
C.
Anastasiou, L. Dixon, K. Melnikov, and F. Petriello, Dilepton
Rapidity Distribution in the Drell-Yan Process
at Next-to-Next-to-Leading Order in
QCD, Physical Review Letters 91,
182002 (2003).
[4]
C.
Anastasiou and A. Lazopoulos, Automatic
Integral Reduction for Higher Order Perturbative
Calculations, Journal of High Energy Physics
2004, 046 (2004).
[5]
C.
Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Mastrolia, D-Dimensional
Unitarity Cut Method, Physics Letters B 645,
213 (2007).
[6]
Z.
Bern, L. Dixon, and D. A. Kosower, Dimensionally-Regulated
Pentagon Integrals, Nuclear Physics B 412, 751
(1994).
[7]
Z.
Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, Fusing Gauge
Theory Tree Amplitudes Into Loop Amplitudes, Nuclear
Physics B 435, 59 (1995).
[8]
Z.
Bern, V. Del Duca, L. J. Dixon, and D. A. Kosower, All
Non-Maximally-Helicity-Violating One-Loop Seven-Gluon
Amplitudes in N=4 Super-Yang-Mills
Theory, Physical Review D 71, 045006
(2005).
[9]
Z.
Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon, and M. Zeng, Black Hole Binary
Dynamics from the Double Copy and Effective Theory, Journal of
High Energy Physics 10, 206 (2019).
[10]
Z.
Bern, J. P. Gatica, E. Herrmann, A. Luna, and M. Zeng, Scalar QED
as a Toy Model for Higher-Order Effects in Classical Gravitational
Scattering, arXiv:2112.12243 [Gr-Qc, Physics:hep-Th]
08, 131 (2022).
[11]
J.
Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A Fresh
Approach to Numerical Computing,
arXiv:1411.1607 (2015).
[12]
G.
D. Birkhoff and R. E. Langer, Relativity and Modern Physics
(Harvard University Press; [etc., etc.],
Cambridge, 1923).
[13]
N.
E. J. Bjerrum-Bohr, J. F. Donoghue, and P. Vanhove, On-Shell Techniques and
Universal Results in Quantum Gravity, Journal of High Energy
Physics 02, 111 (2014).
[14]
L.
Blanchet and T. Damour, Radiative Gravitational Fields
in General Relativity I. General Structure of
the Field Outside the Source,
Philosophical Transactions of the Royal Society of London. Series A,
Mathematical and Physical Sciences 320, 379
(1986).
[15]
L.
Blanchet, T. Damour, and B. R. Iyer, Gravitational Waves from
Inspiralling Compact Binaries: Energy Loss and Waveform to
Second-Post-Newtonian Order, Physical Review D
51, 5360 (1995).
[16]
L.
Blanchet, Gravitational
Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries, Living Reviews in
Relativity 17, 2 (2014).
[17]
W.
B. Bonnor and L. Rosenhead, Spherical Gravitational
Waves, Philosophical Transactions of the Royal Society of
London. Series A, Mathematical and Physical Sciences
251, 233 (1959).
[18]
E.
Brezin, C. Itzykson, and J. Zinn-Justin, Relativistic Balmer
Formula Including Recoil Effects, Physical Review D
1, 2349 (1970).
[19]
E.
I. Buchbinder and F. Cachazo, Two-Loop
Amplitudes of Gluons and Octa-Cuts in
N=4 Super Yang-Mills, Journal of High
Energy Physics 11, 036 (2005).
[20]
A.
Buonanno and T. Damour, Effective One-Body
Approach to General Relativistic Two-Body Dynamics, Physical
Review D 59, 084006 (1999).
[21]
A.
Buonanno and T. Damour, Transition from
Inspiral to Plunge in Binary Black Hole Coalescences, Physical
Review D 62, 064015 (2000).
[22]
F.
Cachazo and A. Guevara, Leading
Singularities and Classical Gravitational
Scattering, 02, 181 (2020).
[23]
M.
Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower, Accurate
Evolutions of Orbiting Black-Hole Binaries
Without Excision, Physical Review Letters
96, 111101 (2006).
[24]
S.
M. Carroll, Spacetime and
Geometry: An Introduction to General
Relativity, Higher Education from Cambridge University
Press (2019).
[25]
C.
Cheung, I. Z. Rothstein, and M. P. Solon, From
Scattering Amplitudes to Classical Potentials
in the Post-Minkowskian Expansion, Physical Review
Letters 121, 251101 (2018).
[26]
[27]
J.
Collins, A New Approach
to the LSZ Reduction Formula, (2019).
[28]
A.
Cristofoli, R. Gonzo, D. A. Kosower, and D. O’Connell, Waveforms from
Amplitudes, Phys. Rev. D 106, 056007
(2022).
[29]
T.
Damour, Gravitational
Scattering, Post-Minkowskian Approximation and
Effective One-Body Theory, Physical Review D
94, 104015 (2016).
[30]
S.
Detweiler, Pulsar Timing
Measurements and the Search for Gravitational Waves, The
Astrophysical Journal 234, 1100 (1979).
[31]
W.
D. Goldberger and I. Z. Rothstein, Effective Field Theory
of Gravity for Extended Objects, Physical Review D
73, 104029 (2006).
[32]
H.
Goldstein, C. P. Poole, and J. L. Safko, Classical
Mechanics (Addison Wesley, 2002).
[33]
A.
Guevara, Holomorphic
Classical Limit for Spin Effects in
Gravitational and Electromagnetic
Scattering, Journal of High Energy Physics
04, 033 (2019).
[34]
S.
G. Hahn and R. W. Lindquist, The Two-Body Problem
in Geometrodynamics, Annals of Physics 29, 304
(1964).
[35]
E.
Herrmann, J. Parra-Martinez, M. S. Ruf, and M. Zeng, Radiative Classical
Gravitational Observables at
$\Mathcal{}O{}(G3̂)$ from Scattering
Amplitudes, Journal of High Energy Physics 10,
148 (2021).
[36]
K.
Hiida and H. Okamura, Gauge
Transformation and Gravitational
Potentials, Progress of Theoretical Physics
47, 1743 (1972).
[37]
G.
Hobbs et al., The International
Pulsar Timing Array Project: Using Pulsars as a Gravitational Wave
Detector, Classical and Quantum Gravity 27,
084013 (2010).
[38]
Y.
Iwasaki, Quantum
Theory of Gravitation Vs. Classical
Theory*): Fourth-Order Potential, Progress
of Theoretical Physics 46, 1587 (1971).
[39]
G.
Kalin and R. A. Porto, From Boundary Data to
Bound States. Part II. Scattering Angle to
Dynamical Invariants (with Twist), Journal of High Energy
Physics 02, 120 (2020).
[40]
G.
Kalin and R. A. Porto, From Boundary Data to
Bound States, Journal of High Energy Physics
01, 072 (2020).
[41]
G.
Kälin and R. A. Porto, Post-Minkowskian
Effective Field Theory for Conservative Binary
Dynamics, Journal of High Energy Physics
11, 106 (2020).
[42]
G.
Kälin, J. Neef, and R. A. Porto, Radiation-Reaction
in the Effective Field Theory Approach to
Post-Minkowskian Dynamics, (2022).
[43]
D.
A. Kosower, B. Maybee, and D. O’Connell, Amplitudes, Observables,
and Classical Scattering, Journal of High Energy Physics
02, 137 (2019).
[44]
A.
V. Kotikov, Differential
Equations Method. New Technique for Massive
Feynman Diagram Calculation, Physics Letters B
254, 158 (1991).
[45]
J.
B. Kruskal, On the Shortest
Spanning Subtree of a Graph and the Traveling Salesman Problem,
Proceedings of the American Mathematical Society 7, 48
(1956).
[46]
J.
Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga, FORM
Version 4.0, Comput. Phys. Commun. 184, 1453
(2013).
[47]
H.
Lehmann, K. Symanzik, and W. Zimmermann, Zur Formulierung
quantisierter Feldtheorien, Il Nuovo Cimento (1955-1965)
1, 205 (1955).
[48]
B.
P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of
Gravitational Waves from a Binary Black Hole
Merger, Physical Review Letters 116,
061102 (2016).
[49]
B.
P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817:
Observation of Gravitational Waves from a
Binary Neutron Star Inspiral, Physical Review
Letters 119, 161101 (2017).
[50]
R.
Abbott et al., Observation of
Gravitational Waves from Two Neutron
Star, The Astrophysical Journal Letters
915, L5 (2021).
[51]
P.
Maierhöfer and J. Usovitsch, Kira 1.2 Release
Notes, arXiv:1812.01491 [Hep-Ph] (2018).
[52]
M.
Maiorano, F. De Paolis, and A. A. Nucita, Principles of
Gravitational-Wave Detection with Pulsar Timing
Arrays, Symmetry 13, 2418 (2021).
[53]
S.
Mukherjee, S. Mitra, and S. Chatterjee, Gravitational
Wave Observatories May Be Able to Detect Hyperbolic
Encounters of Black Holes, Monthly Notices of the
Royal Astronomical Society 508, 5064 (2021).
[54]
D.
Neill and I. Z. Rothstein, Classical
Spacetimes from the S-matrix,
Nuclear Physics B 877, 177 (2013).
[55]
P.
Nogueira, Automatic
Feynman Graph Generation, Journal of Computational
Physics 105, 279 (1993).
[56]
K.
Paton, An Algorithm
for Finding a Fundamental Set of Cycles of a Graph,
Communications of the ACM 12, 514 (1969).
[57]
R.
A. Porto, The Effective
Field Theorist’s Approach to Gravitational
Dynamics, Physics Reports 633, 1
(2016).
[58]
F.
Pretorius, Evolution of
Binary Black-Hole Spacetimes, Physical Review
Letters 95, 121101 (2005).
[59]
E.
Remiddi, Differential
Equations for Feynman Graph Amplitudes, Il Nuovo
Cimento A (1971-1996) 110, 1435 (1997).
[60]
A.
Shomer, A Pedagogical
Explanation for the Non-Renormalizability of Gravity,
(2007).
[61]
A.
V. Smirnov and F. S. Chukharev, FIRE6:
Feynman Integral REduction with Modular
Arithmetic, Computer Physics Communications
247, 106877 (2020).
[62]
M.
A. Srednicki, Quantum Field Theory (Cambridge University
Press, Cambridge ; New York, 2007).
[63]
R.
Sturani, Effective
Field Theory Methods to Model Compact
Binaries, in Handbook of Gravitational Wave
Astronomy, edited by C. Bambi, S. Katsanevas, and K. D.
Kokkotas (Springer, Singapore, 2021), pp.
1–33.
[64]
G.
’t Hooft and M. Veltman, Regularization and
Renormalization of Gauge Fields, Nuclear Physics B
44, 189 (1972).
[65]
K.
S. Thorne, Multipole Expansions of
Gravitational Radiation, Reviews of Modern Physics
52, 299 (1980).
[66]
V.
Vaidya, Gravitational Spin
Hamiltonians from the S Matrix,
Physical Review D 91, 024017 (2015).
[67]
J.
A. M. Vermaseren, New Features of
FORM, (2000).
[68]
S.
Weinberg, Gravitation and Cosmology: Principles and Applications of
the General Theory of Relativity (Wiley, New
York, 1972).