5  Scattering amplitudes and Gravitational Wave (GW)

Whilst we have almost no hope to detect any GW scattering events with current experimental apparatuses, the scattering formalism can still be very useful in the quest for orbital waveforms. Most importantly, while experimental data has not been driving gravitational scattering theory, the interplay between particle scattering experiment and theory have been an enormously fruitful endeavor for the understanding of fundamental interactions in High Energy Physics (HEP) The back and forth between precise measurements (such as those conducted at the Large Hadron Collider (LHC) ) and precise predictions for particle scattering, has pushed the boundaries of the calculations possible. It would be therefore very beneficial if one could apply the large knowledge acquired for small non-gravitationally interacting particles, to large compact orbiting bodies. We will see that it is indeed the case.

Such techniques including EFT double copy, generalized unitarity, Integration by Parts (IBP) reduction, differential equations methods, developed in the context of perturbative computations of collider observables now find an application to the scattering problem in gravity. A key part of applying tools originally developed for quantum systems to problems in gravity is controlling the classical limit, a historically difficult endeavor. Once scattering data is obtained, one needs to extract the relevant observables. This may be in an effort to compare results from the different methods, in which case gauge and diffeomorphism, and Lorentz invariance are key, since different methods make different gauge and frame choices. It can also be to extract the relevant information for detection and data extraction, in which case the GW waveform is the relevant observable. In the latter case one is mostly interested in the orbital waveform, and thus a map from unbound to bound orbits is necessary.

Multiple formalisms have arisen to map the scattering problem to an orbital one, and the quantum formalism to a classical one. One key way is to map scattering data to a potential (as present in a Hamiltonian for example). In fact this has been developped as early as the 1970s in  [1,2]. Further developments happened in  [38]. Here we will follow the treatment in  [Cheung, Rothstein, and Solon 9], where the conservative part of such scattering amplitudes is matched to an EFT and subsequently to mapped to a potential. Recent efforts to add dissipative effects have also been successful  [see 10]. This potential can then be used as input to the EOB formalism. Furthermore,  [Kalin and Porto 11,12], have shown a path forward in directly extending unbound data to bound orbits, obviating the need to use a potential and EOB at all.

Finally, as mentioned in the last chapter, scattering can stand on its own and still be useful without being extended to the orbital case. The PM approximation can be computed from scattering amplitudes in an EFT framework  [13]. We can also explore the classical observables possible in scattering scenarios. This has been developed in  [14] and was extended to local observables 1 such as waveforms in  [15].

  • 1 local as in not time integrated and thus presenting time dependent dynamics

  • In this chapter we will first look at how to use amplitude data to extract orbital and scattering waveforms. We will then look at the KMOC formalism to directly extract observables. Finally, we will look at how to compute amplitudes, and comparing to results such as those in  [14,16].

    5.1 Scattering amplitudes

    In Quantum Field Theory (QFT) to date the only way to encode scattering data is through a scattering amplitude. Consider a process where one starts out with a set of particles described by a state \(\vert i \rangle_{\text{}}\), that interact, and yield a final state \(\vert f \rangle_{\text{}}\). The scattering amplitude is then defined as the probability amplitude for this process to occur. It is simply given by \[\langle i \vert S-1 \vert f \rangle=(2\pi)^4 \delta^{{(4)}}(p_f-p_i)\mathring{\imath}\mathcal{A}^{}_{fi},\]

    where \(S\) is the S-matrix, encoding asymptotic time evolution, \(S=U_t(-\infty,+\infty)\). We subtract the identity from it, forming what some call the transfer matrix \(T\), as we only are interested in processes where something happens (i.e. not everything stays the same). In the above equation we also define the scattering matrix element \(\mathcal{A}^{}_{fi}\)  [see 17] or invariant Feynman amplitude  [see 18], by factoring out a normalized spacetime delta-function that impose the conservation of momentum on the external particles, and a complex unit. The computation of \(\mathcal{A}^{}\) is made possible by the Lehmann Symanzik and Zimmermann (LSZ)  [19,20] formalism, which relates \(\mathcal{A}^{}_{fi}\) to time-ordered correlation functions (also known as Green’s functions) of the given QFT. Green’s functions, can be expanded as an infinite sum of diagrams, weighted by a small coupling. The diagrams encode integrals that are obtained by applying Feynman rules which can be readily extracted from an action describing the theory.

    5.2 From amplitude to potential

    Let us now look at how to map the amplitude to the gravitational potential within the EOB formalism. We will follow the treatment in  [9]. We start by defining the effective theory that describes our problem: thi orbiting bodies are described by two scalar fields \(f_{1}\) and \(f_{2}\) with masses \(m_{1}\) and \(m_{2}\) interacting through a long range potential \(V(r)\). It is the EFT for non-relativistic fields. This EFT is described by the following action

    \[ S=\int \,\mathrm{d}^{}t\, \mathcal{L}_\text{kin}+\mathcal{L}_\text{int}, \]

    where the kinetic term is given by:

    \[ \begin{aligned} \mathcal{L}_\text{kin}=&\int \,\tilde{\mathrm{d}}^{\small D-1}\mathbf{{k}}_{}\, {f{}^\ast}_{1}(-\mathbf{{k}}_{}) \Big(\mathring{\imath}\partial_{t}-\sqrt{\mathbf{{k}}_{}^2+m_{1}} \Big)f_{1}(\mathbf{{k}}_{}), \\ &+\int \,\tilde{\mathrm{d}}^{\small D-1}\mathbf{{k}}_{}\, {f{}^\ast}_{2}(-\mathbf{{k}}_{}) \Big(\mathring{\imath}\partial_{t}-\sqrt{\mathbf{{k}}_{}^2+m_{2}} \Big)f_{2}(\mathbf{{k}}_{}), \end{aligned} \]

    and the interaction term is given by

    \[ \mathcal{L}_\text{int}= -\int \,\tilde{\mathrm{d}}^{\small D-1}\mathbf{{k}}_{}\, \,\tilde{\mathrm{d}}^{\small D-1}\mathbf{{k'}}_{}\, V(\mathbf{{k}}_{},\mathbf{{k'}}_{}) {f{}^\ast}_{1}(\mathbf{{k'}}_{}) {f{}^\ast}_{2}(-\mathbf{{k'}}_{}) f_{1}(\mathbf{{k}}_{}) f_{2}(- \mathbf{{k}}_{}). \]

    This theory is obtained from the full one by integrating out all the massless force carriers , which are consequently encoded in the potential \(V(\mathbf{{k}}_{},\mathbf{{k'}}_{})\) and taking the non-relativistic limit \(\vert\mathbf{{k}}_{} \vert,\vert\mathbf{{k'}}_{} \vert\ll m_{1,2}\). In a classical system we assume the particles to be separated by a minimum distance, called impact parameter \(\vert\mathbf{{b}}_{} \vert\), and consider that their Compton wavelength \(\ell_c\sim\frac{1}{\vert\mathbf{{k}}_{} \vert},\frac{1}{\vert\mathbf{{k'}}_{} \vert}\)2 is much smaller than this separation,

  • 2 Note the use of natural units.

  • \[ \vert\mathbf{{b}}_{} \vert\ll \ell_c\simeq \frac{1}{\vert\mathbf{{k}}_{} \vert},\frac{1}{\vert\mathbf{{k'}}_{} \vert}. \]

    This ensures that the particles are not interacting quantum mechanically in any significant way. Interestingly this hierarchy of scales can be rewritten as:

    \[ \mathbf{{J}}_{}\sim\vert\mathbf{{k}}_{}\times\mathbf{{b}}_{} \vert\gg 1. \]

    Thus, any two body classical system has large angular momentum. We can extract the classical part of any quantity by taking the Leading Order (LO) contribution in the inverse of the angular momentum, or equivalently:

    \[ \frac{1}{J} \propto \frac{1}{\vert b \vert} \sim \vert\mathbf{{k}}_{}-\mathbf{{k'}}_{} \vert\propto \frac{1}{\kappa}, \tag{5.1}\]

    where \(\kappa\) is the coupling constant, which in the case of gravity is \(\kappa=4\pi G\). For the first relation we used that angular momentum is proportional to separation. We then applied the fact that in scattering scenarios the impact parameter is proportional to the inverse of the momentum transfer \(\sim\frac{1}{\vert\mathbf{{q}}_{} \vert}\) where :

    \[ q=(0,\mathbf{{q}}_{})=(0,\mathbf{{k}}_{}-\mathbf{{k'}}_{}). \]

    The last relation in eq. 5.1 holds due to the virial theorem. Since the potential must encode the coulomb potential \(\kappa/\vert\mathbf{{k}}_{}-\mathbf{{k'}}_{} \vert^2\propto J^3\), it must scale similarly. We thus formulate the following ansatz for the potential: \[ V(\mathbf{{k}}_{},\mathbf{{k'}}_{})=\sum_{n=1}^\infty \frac{\kappa^n}{\vert\mathbf{{k}}_{}-\mathbf{{k'}}_{} \vert^{D-1-n}} c_n\Big(\frac{\mathbf{{k}}_{}^2+\mathbf{{k'}}_{}^2}{2} \Big) \tag{5.2}\]

    Note that higher order terms in the potential could be formed by any polynomial of momentum invariants \(\mathbf{{k}}_{}^2\), \(\mathbf{{k'}}_{}^2\), and \(\mathbf{{k}}_{}\cdot\mathbf{{k'}}_{}\). However, not all combinations of these are independent. The ansatz is chosen such that only the variables \(\vert\mathbf{{k}}_{}-\mathbf{{k'}}_{} \vert\) and \(\mathbf{{k}}_{}^2+\mathbf{{k'}}_{}^2\) are present, as the others can be reabsorbed by field redefinitions, or vanish on-shell, such as \(\mathbf{{k}}_{}^2-\mathbf{{k'}}_{}^2\). Note as-well that we work in \(D=4-2\epsilon\) dimensions such that the integrals are dimensionally regulated  [see 21]. In particular an \(\epsilon\)-power corresponds to a logarithm 3. Finally, note that in gravity this is precisely a PM expansion!

  • 3 The third term in the sum is given by \(\kappa^3\ln({\mathbf{{k}}_{}-\mathbf{{k'}}_{}})^2 c_3\Big(\frac{1}{2}{\mathbf{{k}}_{}^2+\mathbf{{k'}}_{}^2} \Big)\).

  • 5.2.1 EFT amplitude

    The first step in establishing determining the potential from a generic scattering amplitude computed in the full theory is to compute the amplitude in the EFT We first identify the Feynman rules from the action. The kinetic term encodes the propagator:

    Fig 5.1: Propagator rule

    where the \(\mathring{\imath}0\) is the Feynman prescription for avoiding the poles. The interaction term is encoded in the vertex

    Fig 5.2: Vertex rule

    The expression for the EFT amplitude will contain the coefficient functions from eq. 5.2 since they will be present as vertex terms. Particle number must be conserved in the non-relativistic limit 4, so the amplitude is a sum of bubble diagrams:

  • 4 As pair production is kinematically forbidden.

  • Fig 5.3: EFT amplitude

    We can consequently neatly organize the amplitude into a sum of terms with specific loop counts. We can also equivalently organize it into a sum of terms with specific \(\kappa\) powers. We write,

    \[\mathcal{A}^{}_\text{EFT}=\sum\limits_{L=0}^\infty\mathcal{A}^{L\text{loop}}_\text{EFT}=\sum\limits_{i=1}^\infty \mathcal{A}^{(i)}_\text{EFT}.\]

    Notably, these partitions do not line up for the EFT since the vertex contains all powers of the coupling. This is in contrast to the full theory where in fact they yield the same partition. We will eventually want to partition over the coupling power to compare the full theory.

    Since every cut of the diagrams contributing to \(\mathcal{A}^{}_\text{EFT}\) contains two propagators, it is useful to define a 2-body propagator. We can integrate over the energy components of the loop momentum, since the vertex does not have an energy dependence:5

  • 5 The 4-momentum conservation at each vertex means that the energy components of the two propagating momenta must carry along the energy component of the initial state \(E_{}=E_{1}+E_{2}\). This can be encoded by demanding that \(\omega_1+\omega_2=E_{}\). Taking the Center of Momentum (COM) frame for the initial momenta means that the 3 momenta of each propagator must cancel i.e. \(\mathbf{{k}}_{1}+\mathbf{{k}}_{2}=0\)

  • \[\mathring{\imath}\Delta_2(\mathbf{{k}}_{} )=\int \,\tilde{\mathrm{d}}^{}\omega\, \frac{\mathring{\imath}}{\omega-\sqrt{\mathbf{{k}}_{}^2+m_1^2}}\frac{\mathring{\imath}}{E_{}-\omega-\sqrt{\mathbf{{k}}_{}^2+m_2^2}}=\frac{\mathring{\imath}}{E_{}-\sqrt{\mathbf{{k}}_{}^2+m_{1}^2}-\sqrt{\mathbf{{k}}_{}^2+m_{2}^2}},\]

    where the integral is performed using the residue theorem, closing the contour in either half plane, where in either case a pole is present. We have define \(E_{}=E_{1}+E_{2}\) to be the COM energy of the two initial states:6

  • 6 which is equal to the outgoing energy

  • \[ E_{i}=\sqrt{\mathbf{{p}}_{}^2+m_{i}^2}=\sqrt{\mathbf{{p'}}_{}^2+m_{i}^2}, \]

    where \(\mathbf{{p}}_{}\) and \(\mathbf{{p'}}_{}\) are the initial and final three-momenta of the two states 7 in the COM frame. Finally, we can write the diagram at loop level \(L>0\) encodes:

  • 7 For example in the initial state one scalar field will have 3-momentum \(\mathbf{{p}}_{}\), and the other \(-\mathbf{{p}}_{}\)

  • \[ \mathcal{A}^{L\text{loop}}_\text{EFT}= \int\prod\limits_{i=1}^L \,\tilde{\mathrm{d}}^{\small D-1}\mathbf{{k}}_{i}\, V(\mathbf{{p}}_{},\mathbf{{k}}_{1})\Delta_2(\mathbf{{k}}_{1} )\cdots\Delta_2(\mathbf{{k}}_{L} )V(\mathbf{{k}}_{L},\mathbf{{p'}}_{}). \]

    This integral can be performed in the non-relativistic limit, as done by  [Bern et al. 22] up to PM Up to PM the amplitudes of the EFT is:8

  • 8 Here the re-partioning mentioned above has been applied and a change in loop momenta: \(\mathbf{{k}}_{i}\to\mathbf{{p}}_{}+\mathbf{{\ell}}_{i}\).

  • \[ \begin{aligned} \mathcal{A}^{(1)}_\text{EFT}&=-\frac{4\pi Gc_1}{\mathbf{{q}}_{}^2},\\ \mathcal{A}^{(2)}_\text{EFT}&= \pi^2G^2 \Big(-\frac{2 c_2}{\vert\mathbf{{q}}_{} \vert}+\frac{1}{E_{}\xi\vert\mathbf{{q}}_{} \vert}\Big[(1-3\xi)c_1^2+4\xi^2E_{}^2c_1 c'_1 \Big]\\ & \int \,\tilde{\mathrm{d}}^{D-1}\mathbf{{\ell}}_{}\,\frac{32E_{}\xi c_1^2}{\mathbf{{\ell}}_{}^2(\mathbf{{q}}_{}+\mathbf{{\ell}}_{})^2(\mathbf{{\ell}}_{}^2+2\mathbf{{p}}_{}\mathbf{{\ell}}_{})}\Big), \end{aligned} \]

    where \(\xi=\frac{E_{1}E_{2}}{(E_{1}+E_{2} )^2}\) is the reduced energy ratio. The arguments of the coefficient functions \(c_1\) are kept implicit and a prime denotes a derivative with respect to \(\mathbf{{p_{}}}_{}\).

    The key point is that the matching procedure requires the EFT amplitude for two-to-two scattering to be equal to the full amplitude at every order in the coupling constant \(\kappa\), i.e. provided we obtain the amplitude of the full theory, and carefully apply the same limiting procedures, we impose that

    \[ \mathcal{A}^{(i)}_\text{EFT}=\mathcal{A}^{(i)}_\text{full} \quad \forall i. \]

    which fixes the coefficients in the potential ansatz eq. 5.2, and fulfills the promised map from amplitude to potential. Importantly, we must apply the limiting procedure applied above, i.e., the classical and non-relativistic limit, which is summarized by the following hierarchy of scales:

    \[ m_{1},m_{2}\gg J \vert\mathbf{{q}}_{} \vert \gg \vert\mathbf{{q}}_{} \vert. \]

    In the full theory this hierarchy is equivalent to restricting to a specific kinematic regime, following the method of regions. We consider all the possible loop-momentum scalings, first due to the classical limit:

    Region Momentum \(\ell = (\omega,\mathbf{{\ell}}_{})\)
    hard \((m,m)\)
    soft \((\vert\mathbf{{q_{}}}_{} \vert,\vert\mathbf{{q_{}}}_{} \vert)\)

    In this language, the soft region is responsible for the classical limit, since we consider a small \(\vert\mathbf{{q_{}}}_{} \vert\) expansion. We will in fact explore this expansion in a different light in Section 5.3. Taking the NR limit corresponds to a subregion of the soft region, the so-called potential region:

    \[ (\omega,\mathbf{{\ell}}_{})\sim (\vert\mathbf{{u_{}}}_{} \vert\vert\mathbf{{q_{}}}_{} \vert,\vert\mathbf{{q_{}}}_{} \vert),\]

    where we use that the NR expansion is a given by \[\vert\mathbf{{p_{}}}_{} \vert\ll m\] and thus equivalently 9 by a small relative velocity:

  • 9 dividing by mass

  • \[ \vert\mathbf{{u_{}}}_{} \vert\ll1.\]

    To summarize, in order to obtain the form of the potential, we first compute the amplitude in an EFT absorbing all force carrying particles into an effective vertex. Making an ansatz for the potential we can compute the amplitude in the non-relativistic limit in terms of unknown coefficients. This same amplitude can be computed in the full theory, which, as a consequence of the limiting procedure, has simplified kinematic dependence. The coefficients of the EFT amplitude are then determined by matching it order by order with the full amplitude.

    Unfortunately, the procedure described above, and in fact any procedure trying to make contact with EOB by expanding the gravitational potential, intrinsically does not capture the full physics. The crucial point that makes compact binaries interesting is that they are not isolated, energy conserving systems. The energy of the system is lost to the gravitational waves that enable us to detect them. Any conservative dynamics, by construction, cannot capture this loss of energy. In the context of EOB this radiation reaction was added after the fact, through direct modifications of the Equation of Motion (EOM) obtained from Hamilton’s equations. It is not clear how to incorporate dissipative data from the amplitude in the EOB framework.

    One way to not encounter this difficulty is to fully bypass the EOB framework and try to obtain observables directly from the amplitude. This is the subject of the following sections.

    5.3 KMOC framework

    The KMOC framework ( [14]) is very general, and is aimed at taking the classical limit of a scattering event in an unspecified theory. We will apply it later on to SQED and gravity.

    5.3.1 Conventions

    First let us define our conventions. Throughout this section we use relativistically natural units, i.e. we do not set \(\hbar=1\). This will essentially be the small parameter that multiplies the soft momenta that defined the region in Section 5.2. In this section we will further motivate this classical limit in more detail by taking the generally accepted limit that makes quantum physics collapse to classical physics

    \[\hbar\to0.\]

    We still retain \(c=1\), meaning that, using dimensional analysis we have that \([L][T]^{-1}=1\) i.e. \([L]=[T]\), length and time are measured in the same units. Correspondingly, energy is measured in units of mass \[ E_{}=mc^2\implies[E_{}]=[m]=[M], \]

    and \(\hbar\) has the following units

    \[ E_{}=\hbar \omega\implies [M]=[\hbar][T]^{-1}\implies [\hbar]=[T][M] .\]

    Thus, momentum \(p_{}\) has units of \([p_{}]=[M]\) mass and wavenumber \([\bar{p_{}}]=[\frac{p_{}}{\hbar}]=[T]^{-1}\) has units of inverse time. We will denote the Lorentz-invariant phase space measure by \(\,\mathrm{d}\Phi_{}(p)\,\)10:

  • 10 Repeated integration will be denoted \(\,\mathrm{d}\Phi_{n}(p_1,\dots,p_n)\,\)

  • \[ \int \,\mathrm{d}\Phi_{}(p)\, \dots = \int \frac{\,\mathrm{d}^{3}\mathbf{{p}}_{}\,}{2\hbar\omega_{\mathbf{{p}}_{}}(2\pi)^3} \dots = \int \,\tilde{\mathrm{d}}^{4}p\,\tilde{\delta}^{(+)}(p^2-m^2) \dots, \]

    where quantities denoted by bars absorb the relevant factors of \(2\pi\), such that \(\,\tilde{\mathrm{d}}^{n}p\,=\frac{\,\mathrm{d}^{n}p\,}{(2\pi)^n}\). Additionally, we have defined \(\hbar\omega_{\mathbf{{p}}_{}}=\sqrt{\mathbf{{p}}_{}^2+m^2}\) to be the on-shell energy and \(\delta^{(+)}\) is the normalized positive energy on-shell delta function:

    \[ \tilde{\delta}^{(+)}(p^2-m^2)=(2\pi)\delta^{{}}({p}_{}^2-m^2)\Theta^{{}}(p{}^{0})=\tilde{\delta}^{}({p}_{}^2-m^2)\Theta^{{}}(p{}^{0}) \]

    5.3.2 Intital State

    With our conventions at hand, let us set the stage for the problem. Imagine we want to scatter two particles, be they massive black holes, or tiny electrons, into each other, with a constant particle number (i.e. a classical two in two out scattering). As mentioned in Section 5.1, in QFT the framework that formalizes scattering of definite particle number states is based on the LSZ reduction formula.

    we work in the Heisenberg picture here

    Let us look at it in more detail. The first step is to define the states we want to scatter. Suppose our theory has single particle states \(\vert p \rangle_{\text{}}\), with mass \(m_{}\), eigenstates of the momentum:

    \[\mathbb{P}{}^{\mu}\vert p \rangle_{\text{}}=p_{}{}^{\mu}\vert p \rangle_{\text{}}\quad \text{with} \quad p^0=\hbar\omega_{\mathbf{{p}}_{}}=\sqrt{\mathbf{{p_{}}}_{}^2+m_{}^2}.\]

    These states can be seen as special cases (the plane wave states) of wavepacket states:11

  • 11 A plane wave state \(\vert f \rangle_{\text{}}=\vert p \rangle_{\text{}}\) would be given by \(\breve{f}(k)=2 \hbar\omega_{\mathbf{{k}}_{}} \tilde{\delta}^{(3)}(\mathbf{{k}}_{}-\mathbf{{p}}_{})\)

  • \[\vert f \rangle_{\text{}}=\int \,\mathrm{d}\Phi_{}(k)\, \breve{f}(k) \vert k \rangle_{\text{}},\]

    where \(\breve{f}(k)\) is the momentum space wave-function or, more mathematically, the momentum distribution function. Note that it is almost a Fourier transform, but not quite, as it is performed on the mass shell. If the spacetime ‘wave-function’ 12 is given by

  • 12 Note that the concept of coordinate space wave-function is ill-defined in interacting theories. However, for such asymptotic states, the wave-function outside the bulk (on the infinite time boundary) is that of a free wave-function.

  • \[f(x)=\int \,\mathrm{d}\Phi_{}(k)\, \breve{f}(k) \mathrm{e}^{-\mathring{\imath}{k}_{}\cdot{x}_{}}, \tag{5.3}\]

    so that \(\breve{f}(k)\) is consequently given by

    \[\langle k \vert f \rangle=\breve{f}(k)= 2 \hbar\omega_{\mathbf{{p}}_{}}\int \,\mathrm{d}^{3}\mathbf{{x}}_{}\,f(x) \mathrm{e}^{\mathring{\imath}k\cdot x}. \tag{5.4}\]

    If we now define the following operators 13 ^[ Note that if we replace \(f(x)\) by a plane wave state \(\mathrm{e}^{-\mathring{\imath}k\cdot x}\) we obtain and define the following:

  • 13 \(f\overleftrightarrow{\partial_{\mu}}g=f(\partial_{\mu}g )-(\partial_{\mu}f )g\)

  • \[ a_{\mathbf{{k}}_{}}^{\dagger}(t)= \int \,\mathrm{d}^{3}\mathbf{{x}}_{}\, \mathrm{e}^{-\mathring{\imath}k\cdot x} \Big[\hbar\omega_{\mathbf{{k}}_{}}f_{}(x)-\mathring{\imath}\partial_{0}f_{}(x) \Big], \]

    \[ a_{\mathbf{{k}}_{}}(t)= \int \,\mathrm{d}^{3}\mathbf{{x}}_{}\, \mathrm{e}^{\mathring{\imath}k\cdot x} \Big[\hbar\omega_{\mathbf{{k}}_{}}f_{}(x)+\mathring{\imath}\partial_{0}f_{}(x) \Big], \]

    ]

    \[ a_{f}^{\dagger}(t)= - \mathring{\imath}\int \,\mathrm{d}^{3}\mathbf{{x}}_{}\,f(x) \overleftrightarrow{\partial_{0}} \phi_{}(x), \]

    \[ a_{f}(t)= \mathring{\imath}\int \,\mathrm{d}^{3}\mathbf{{x}}_{}\,{f{}^\ast}(x) \overleftrightarrow{\partial_{0}} \phi_{}(x), \]

    where \(\phi_{}(x)\) is the Heisenberg field operator of our theory. While these operators are time dependent, this dependence is not obtained from applying the Heisenberg EOM 14, instead it is present through the time dependence of the wave-function \(f(x)\). It turns out that these operators, suggestively written are the true creation and annihilation operators in the interacting theory.

  • 14 \(\frac{\mathrm{d}^{} A_H(t)}{\mathrm{d}{t}^{}}=\mathring{\imath}[H_H,A_H(t)]\)

  • We can now define a general one particle state \(\vert f \rangle_{\text{}}\) as the result of a creation operator acting on the physical vacuum. Crucially, this only makes sense in the boundary of the bulk, i.e. at asymptotic times \(t\to\pm\infty\)15. Inside the bulk, any thusly created state would in fact not have definite particle number. This definitely makes sense in the scattering problem because if you consider the whole system as a state, it only has definite particle number at asymptotic times, and inside the bulk the scattering happens, and the particle number is not conserved (at least quantum mechanically).

  • 15 See  [18] or  [20] for a more in depth discussion of this point

  • Consequently, we only define asymptotic states, denoting them by an \(\text{in}\) subscript if they were created at \(t\to-\infty\) and \(\text{out}\) if they were created at \(t\to+\infty\):

    \[ \vert f \rangle_{\text{in}}\stackrel{\text{def}}{=}\lim_{t\to-\infty}a_{f}^{\dagger}(t)\vert \Omega \rangle_{\text{}}=a_{f;\text{in}}^{\dagger}\vert \Omega \rangle_{\text{}}=\int \,\mathrm{d}\Phi_{}(k)\, \breve{f}(k) \underbracket{a_{\mathbf{{k}}_{}}^{\dagger}\vert \Omega \rangle_{\text{}}}_{\vert k \rangle_{\text{}}} \]

    and the corresponding \(t \to +\infty\) state where in is replaced with out. It turns out that the extension to multiparticle states is not much more complicated. The one thing to demand is that the momentum distributions say \(\breve{f_1},\breve{f_2},\dots\) have no common support, i.e., they are not overlapping. In this case an n-particle in state is defined as:

    \[ \vert f_1,\dots,f_n \rangle_{\text{in}}\stackrel{\text{def}}{=}a_{f_1;\text{in}}^{\dagger}a_{f_2;\text{in}}^{\dagger}\dots a_{f_n;\text{in}}^{\dagger}\vert \Omega \rangle_{\text{}}=\int \,\mathrm{d}\Phi_{n}(k_1,\dots,k_n)\, \breve{f_1}(k_1)\dots\breve{f_n}(k_n) \vert k_1,\dots,k_n \rangle_{\text{}}. \]

    We now have the definitions for asymptotic in and out states for any number of particles. Before defining the setup to scatter two particles, let us look at the meaning of the position space wave-function \(f(x)\) as defined in eq. 5.3. Consider a sharply peaked, compactly supported momentum distribution \(\breve{f}(k)\) around a value \(\mathbf{{p}}_{0}\) and a characteristic width \(\Delta p\). One such function could be:

    \[ f(\mathbf{{p}}_{} ; \mathbf{{p}}_{0}, \Delta p )=\left\{\begin{array}{ll} N \mathrm{e}^{-1 /(1-\vert\mathbf{{p}}_{}-\mathbf{{p}}_{0} \vert^2 / \Delta p^2 )} & \text { if }\vert\mathbf{{p}}_{0}-\mathbf{{p}}_{} \vert<\Delta p \\ 0 & \text { if }\vert\mathbf{{p}}_{0}-\mathbf{{p}}_{} \vert \geq \Delta p \end{array}\right., \tag{5.5}\]

    where \(N\) is a normalization constant. The integrand in eq. 5.3, at large \(t\) or \(\mathbf{{x}}_{}\), will be dominated by the stationary phase point \(\mathbf{{p}}_{s}\) which is given by:16

  • 16 This then means that \[\mathbf{{p}}_{s}=\frac{m_{}\mathbf{{x}}_{}\text{sign}(t)}{\sqrt{t^2-\mathbf{{x}}_{}^2}}\] thus \[\hbar\omega_{{\mathbf{{p}}_{s}}}=\frac{m_{}\vert t \vert}{\sqrt{t^2-\mathbf{{x}}_{}^2}}\]

  • \[0=-\frac{\partial_{}^{} }{\partial_{}{\mathbf{{p}}_{s}}^{}}(\hbar\omega_{{\mathbf{{p}}_{s}}}t+\mathbf{{p}}_{s}\cdot\mathbf{{x}}_{} )=-\frac{\mathbf{{p}}_{s}t}{\hbar\omega_{{\mathbf{{p}}_{s}}}}+\mathbf{{x}}_{}. \tag{5.6}\]

    In the case of a sharply peaked momentum distribution, the coordinate space wave-function will be largest when the stationary phase point is the same as the peak of the momentum distribution, i.e., \(\mathbf{{p}}_{s}=\mathbf{{p}}_{0}\) i.e., substituting \(\mathbf{{p}}_{s}\) into eq. 5.6 gives: \[ \mathbf{{x}}_{}\simeq \frac{\mathbf{{p}}_{0}t}{\hbar\omega_{{\mathbf{{p}}_{0}}}}=\mathbf{{v}}_{0}t. \]

    This is precisely the trajectory of the classical relativistic particle. Now consider the case of two particles with different peaked momentum distributions their trajectories will have different velocities, but the same positions at time \(0\). Thus, we will shift one of these trajectories by a so called impact parameter \(b{}^{\mu}\)17, parametrizing the relative separation of the two particles/wave-packets. This can be simply done by multiplying the momentum distribution \(\breve{f_{1}}(p)\) by a factor of \(\mathrm{e}^{\frac{\mathring{\imath}}{\hbar} b\cdot p}\). We take it to be perpendicular to the initial momenta \(p_{1},p_{2}\). We now can write down the initial state that we are going to study:

  • 17 \(f(x)=\int \,\mathrm{d}\Phi_{}(p_{})\, \breve{f}({p_{}})\mathrm{e}^{-\frac{\mathring{\imath}}{\hbar} p_{}^\mu x_\mu}\). Then a shifted, i.e. translated version of \(f(x)\) can be written:\[\begin{aligned}f(x-x_0)&=\int \,\mathrm{d}\Phi_{}(p_{})\, \breve{f}({p_{}})\,\mathrm{e}^{-\frac{\mathring{\imath}}{\hbar} p_\mu (x^\mu-x_0^\mu)}\\&=\int \,\mathrm{d}\Phi_{}(p_{})\, \breve{f}({p_{}})\,\mathrm{e}^{\frac{\mathring{\imath}}{\hbar}p_\mu x^\mu_0}\,\mathrm{e}^{-\frac{\mathring{\imath}}{\hbar} p_\mu x^\mu}\end{aligned}\] Thus the associated, translated state is:\[\vert f \rangle_{\text{}}=\int \,\mathrm{d}\Phi_{}(p_{})\, \breve{f}({p_{}})\,\mathrm{e}^{\frac{\mathring{\imath}}{\hbar}p_\mu x^\mu_0}\,\vert p_{} \rangle_{\text{}}\]

  • \[ \vert \text{in} \rangle_{\text{}}=\int \,\mathrm{d}\Phi_{2}(p_{1},p_{2})\, \breve{f_{1}}(p_{1}) \breve{f_{2}}(p_{2}) \mathrm{e}^{\frac{\mathring{\imath}}{\hbar} b{}_{\mu} p_{1}{}^{\mu}}\vert p_{1},p_{2} \rangle_{\text{in}}. \tag{5.7}\]

    From now on we will drop the breve and infer from the arguments the type of \(f_{}\) we are dealing with. Observe that by extracting the impact parameter in this way, the wave-functions can be identical in form, and will still be separated as required.

    5.3.3 Change in observable

    The KMOC framework concerns itself with the change of an observable quantity during a scattering event encoded in an operator \(\mathbb{O}\). For such an observable quantity \(O\) , its change is obtained by evaluating the difference of the expectation value of \(\mathbb{O}\), between in and out states \[ \Delta O=\langle\text{out} \vert \mathbb{O} \vert \text{out} \rangle-\langle\text{in} \vert \mathbb{O} \vert \text{in} \rangle. \]

    In quantum mechanics, the out states are related to the in states by the time evolution operator, i.e., the S-matrix, \(\vert \text{out} \rangle_{\text{}}=S\vert \text{in} \rangle_{\text{}}\). Thus:

    In order, we use the unitarity of the S-matrix, then express the S-matrix as the identity (no actual interaction) and the transfer matrix \(T\). The commutators are then expanded and the part with the identity vanish (as \(\mathbb{1}\) commutes with everything).

    \[ \begin{aligned} \Delta O &=\langle\text{in} \vert S^\dagger\mathbb{O}S \vert \text{in} \rangle-\langle\text{in} \vert \mathbb{O} \vert \text{in} \rangle\\ &\stackrel{S^\dagger S=\mathbb{1}}{=} \langle\text{in} \vert S^\dagger [\mathbb{O},S] \vert \text{in} \rangle\\ &\stackrel{S=\mathbb{1}+\mathring{\imath}T}{=} \langle\text{in} \vert [\mathbb{O},\mathbb{1}+\mathring{\imath}T] \vert \text{in} \rangle -\langle\text{in} \vert \mathring{\imath}T^\dagger [\mathbb{O},\mathbb{1}+\mathring{\imath}T] \vert \text{in} \rangle\\ &= \langle\text{in} \vert \mathring{\imath}[\mathbb{O},T] \vert \text{in} \rangle +\langle\text{in} \vert T^\dagger [\mathbb{O},T] \vert \text{in} \rangle\\ &=\Delta O_\text{v}\,+\Delta O_\text{r}. \end{aligned} \tag{5.8}\]

    If we put in the definition of our in state (eq. 5.7), we have

    \[ \Delta O = \int \,\mathrm{d}\Phi_{4}(p_{1},p_{2},p_{1}',p_{2}')\, f_{1}(p_{1}) f_{2}(p_{2}) {f{}^\ast}_{1}(p_{1}') {f{}^\ast}_{2}(p_{2}') \,\mathrm{e}^{\mathring{\imath}b{}_{\mu} \frac{p_{1}{}^{\mu}-p_{1}'{}^{\mu}}{\hbar}} \big[\mathcal{I}_{\text{v}}(O)-\mathcal{I}_{\text{r}}(O) \big], \]

    where we defined the real integrand \(\mathcal{I}_{\text{r}}(O)\) and the virtual integrand \(\mathcal{I}_{\text{v}}(O)\) as the following matrix elements 18

  • 18 NB: the notation is slightly different in the  [16] paper

  • \[ \begin{aligned} \mathcal{I}_{\text{v}}(O)&={}_{\text{in}}\langle p_{1}'p_{2}' \vert{\mathring{\imath}[\mathbb{O},T] }\vert p_{1}p_{2} \rangle_{\text{in}}\\ \mathcal{I}_{\text{r}}(O)&={}_{\text{in}}\langle p_{1}'p_{2}' \vert{T^\dagger[\mathbb{O},T] }\vert p_{1}p_{2} \rangle_{\text{in}}. \end{aligned} \]

    Let us first look at the virtual integrand \(\mathcal{I}_{\text{v}}(O)\):19

  • 19 Here we define \[O_{\text{in}}\vert p_{1}p_{2} \rangle_{\text{}}=\mathbb{O}\vert p_{1}p_{2} \rangle_{\text{}}\] aswell as, \[O_{\text{in}}'{}_{\text{}}\langle p_{1}'p_{2}' \vert={}_{\text{}}\langle p_{1}'p_{2}' \vert\mathbb{O}\] and finally \[\underset{\mathclap{p_{}'-p_{}}}{\Delta}O\,=O_{\text{in}}'-O_{\text{in}}\]

  • \[ \begin{aligned} \mathcal{I}_{\text{v}}(O)&={}_{\text{in}}\langle p_{1}'p_{2}' \vert{\mathring{\imath}[\mathbb{O},T] }\vert p_{1}p_{2} \rangle_{\text{in}} \\ &={}_{\text{in}}\langle p_{1}'p_{2}' \vert{\mathring{\imath}\mathbb{O}T}\vert p_{1}p_{2} \rangle_{\text{in}} - {}_{\text{in}}\langle p_{1}'p_{2}' \vert{\mathring{\imath}T\mathbb{O} }\vert p_{1}p_{2} \rangle_{\text{in}}\\ &=\mathring{\imath}O_{\text{in}'} \; {}_{\text{in}}\langle p_{1}'p_{2}' \vert{T}\vert p_{1}p_{2} \rangle_{\text{in}} - \mathring{\imath}O_{\text{in}} \; {}_{\text{in}}\langle p_{1}'p_{2}' \vert{T}\vert p_{1}p_{2} \rangle_{\text{in}}\\ &=\mathring{\imath}\underset{\mathclap{p_{}'-p_{}}}{\Delta}O\, \, {}_{\text{in}}\langle p_{1}'p_{2}' \vert{T}\vert p_{1}p_{2} \rangle_{\text{in}}\\ &=\mathring{\imath}\underset{\mathclap{p_{}'-p_{}}}{\Delta}O\,\,\tilde{\delta}^{4}(p_{1}+p_{2}-p_{1}'-p_{2}') \mathcal{A}^{}(p_{1},p_{2}\to p_{1}',p_{2}'). \end{aligned} \tag{5.9}\]

    Note that the amplitude is from in states to in states. In order to obtain the real integrand \(\mathcal{I}_{\text{r}}(O)\), we insert a complete set of states :20

  • 20 \(1=\sum\limits_X \int \,\mathrm{d}\Phi_{2+\vert X \vert}(r_1,r_2,X)\,\vert r_1 r_2 X \rangle \langle r_1 r_2 X \vert\) Where we could consider the states \({r_1,r_2,X}\) to be the final states after the scattering. Note that we always impose having two Black Hole (BH) at all times, as we have no pair annihilation, which is why the sum always has a two particle dyad. The additional states encoded in \(X\) are all possible additional messenger states (we also have no BH pair production).

  • \[ \begin{aligned} \mathcal{I}_{\text{r}}(O)&={}_{\text{in}}\langle p_{1}'p_{2}' \vert{T^\dagger[\mathbb{O},T]}\vert p_{1}p_{2} \rangle_{\text{in}}\\ &=\sum\limits_X \int \,\mathrm{d}\Phi_{2+\vert X \vert}(r_1,r_2,X)\, {}_{\text{in}}\langle p_{1}'p_{2}' \vert T^\dagger\vert{r_1 r_2 X}\rangle\langle {r_1 r_2 X} \vert [\mathbb{O},T]\vert p_{1}p_{2} \rangle_{\text{in}}\\ &=\sum\limits_X \int \,\mathrm{d}\Phi_{2+\vert X \vert}(r_1,r_2,X)\, \tilde{\delta}^{4}(p_{1}+p_{2}-r_{1}-r_{2}-r_{X})\, \mathcal{A}^{}(p_{1}, p_{2}\to r_{1}, r_{2}, r_{X}) \\ &\qquad \underset{\mathclap{rX-p_{}}}{\Delta}O\,\,\tilde{\delta}^{4}(p_{1}'+p_{2}'-r_{1}-r_{2}-r_{X})\, \mathcal{{A{}^\ast}}^{}(p_{1}', p_{2}'\to r_{1}, r_{2}, r_{X}), \end{aligned} \tag{5.10}\]

    where the \(X\) encodes any number of additional messenger states, and \(r_{X}\) is the sum of their momenta. For both integrands we can preform some variable changes and eliminate certain Dirac delta functions. We introduce momentum shifts \(q_i=p_{i}'-p_{i}\) and then integrate over \(q_2\), and finally relabel \(q_1 \to q_{}\) 21. Thus, we have

  • 21 Introducing the momentum shifts modifies the measure in the following way: \[\begin{aligned}\,\mathrm{d}\Phi_{}(p_{i}')\,&=\,\mathrm{d}\Phi_{}(p_{i}+q_i)\,\\=&\,\tilde{\mathrm{d}}^{4}q_i\,\,\tilde{\delta}^{}({(p_{i}+q_i)^2-m_i^2}) \Theta^{{}}({p_{i}^0+q_i^0})\end{aligned}\] Now since we also have the on-shell enforcing delta function from \(\,\mathrm{d}\Phi_{}(p_{i})\,\) we can rewrite the delta functions: \[\begin{aligned}\,\mathrm{d}\Phi_{}(p_{i})\,&\,\tilde{\delta}^{}((p_{i}+q_i)^2-m_i^2)\\&=\,\mathrm{d}\Phi_{}(p_{i})\,\tilde{\delta}^{}(\underbracket{(p_{i}^2-m_i^2)}_{\text{redundant}}+2 p_{i} \cdot q_i+q_i^2)\\&=\,\mathrm{d}\Phi_{}(p_{i})\,\tilde{\delta}^{}(2 p_{i} \cdot q_i+q_i^2)\end{aligned}\] Finally we integrate \(q_2\) by solving \(\tilde{\delta}^{(4)}(p_{1}+p_{2}-p_{1}'-p_{2}')=\tilde{\delta}^{(4)}(q_1+q_2)\) and thus we just set \(q_2=-q_1\)

  • \[ \begin{aligned} \Delta O_\text{v}\,=\int &\,\mathrm{d}\Phi_{2}(p_{1},p_{2})\, \,\tilde{\mathrm{d}}^{4}q_{}\, \tilde{\delta}^{}(2 p_{1} \cdot q_{}+q_{}^2) \Theta^{{}}(p_{1}{}^{0}+q_{}^0)\, \tilde{\delta}^{}(2 p_{2} \cdot q_{}-q_{}^2) \Theta^{{}}(p_{2}{}^{0}-q_{}^0)\\ &\times f_{1}(p_{1})f_{2}(p_{2}){f{}^\ast}_{1}(p_{1}+q_{}){f{}^\ast}_{2}(p_{2}-q_{})\,\mathrm{e}^{-\frac{\mathring{\imath}}{\hbar} b{}_{\mu} q_{}^\mu}\\ &\times \mathring{\imath}\underset{\mathclap{q_{}}}{\Delta}O\, \mathcal{A}^{}(p_{1},p_{2} \to p_{1}+q_{},p_{2}-q_{}), \end{aligned} \tag{5.11}\]

    \[ \begin{aligned} \Delta O_\text{r}\,=\sum\limits_X \int &\,\mathrm{d}\Phi_{2+\vert X \vert}(r_1, r_2,X)\, \,\mathrm{d}\Phi_{2}(p_{1},p_{2})\, \,\tilde{\mathrm{d}}^{4}q_{}\, \tilde{\delta}^{}(2 p_{1} \cdot q_{}+q_{}^2) \Theta^{{}}(p_{1}{}^{0}+q_{}^0)\\ &\times \tilde{\delta}^{}(2 p_{2} \cdot q_{}-q_{}^2) \Theta^{{}}(p_{2}{}^{0}-q_{}^0)\\ &\times f_{1}(p_{1})f_{2}(p_{2}){f{}^\ast}_{1}(p_{1}+q_{}){f{}^\ast}_{2}(p_{2}-q_{})\,\mathrm{e}^{-\frac{\mathring{\imath}}{\hbar} b_\mu q_{}^\mu}\\ &\times\underset{\mathclap{rX-p_{}}}{\Delta}O\,\tilde{\delta}^{(4)}(p_{1}+p_{2}-r_{1}-r_{2}-r_{X}) \\ &\times \mathcal{A}^{}(p_{1}, p_{2} \to r_{1}, r_{2}, r_{X})\mathcal{{A{}^\ast}}^{}(p_{1}+q_{}, p_{2}-q_{}\to r_{1}, r_{2}, r_{X}). \end{aligned} \tag{5.12}\]

    We have arrived at an integral expression for the change in observable \(\Delta O\). Luckily for us, we will not need to perform these integrals in the classical limit. We will just have carefully chosen replacement rules for the integrated variables! Let us look at this in more detail now.

    5.3.4 Classical limit

    Since we are concerned with classical observables, we need to explore the classical limit of eq. 5.8, i.e. the limit of \(\hbar \to 0\). We first discuss the classical limit of wave-functions. We impose multiple conditions on the wave-functions. The first are those imposed by LSZ reduction. That is,

    • Compact support momentum space wave-function
    • Peaked around one value of momenta

    Furthermore, the classical limit of the wave-functions should make sense, i.e. 

    1. as \(\hbar \to 0\) the position and momentum wave-function should approach Dirac delta functions, centered around their classical values.
    2. The overlap between the wave-function and its conjugate should be nearly full, since they represent the same particle classically.

    Consider for example a non-relativistic wave-function for a particle of mass \(m_{}\):

    \[ f(\mathbf{{p_{}}}_{})=\exp\Big({-\frac{\vert\mathbf{{p_{}}}_{} \vert}{2 \hbar m \ell_c/\ell_\omega^2}}\Big)\stackrel{\hbar=\ell_cm}{=}\exp\Big({-\frac{\vert\mathbf{{p_{}}}_{} \vert}{2 m^2 \ell_c^2 /\ell_\omega^2}}\Big), \]

    where \(\ell_c=\frac{\hbar}{m}\) is the compton wavelength of the particle and \(\ell_\omega\) is a characteristic width. This wave-function, with the proper normalization, grows sharper in the \(\hbar \to 0\) limit. If we now take the Fourier transform of \(f(\mathbf{{p_{}}}_{})\) to obtain the position “probability density”, we have:22 \[ \begin{aligned} \mathcal{F}^{-1}_{\mathbf{{p_{}}}_{}}\left[f\right](\mathbf{{x}}_{}) &=\int \frac{\,\mathrm{d}^{}\mathbf{{p_{}}}_{}\,}{2 \pi} \exp\Big({-\big(\frac{\mathbf{{p_{}}}_{}}{A} \big)^2}\Big)\exp\Big({-\frac{\mathring{\imath}}{\hbar} \mathbf{{p_{}}}_{}\cdot \mathbf{{x}}_{}}\Big)\\ &=\frac{1}{2\pi}\underbracket{\int \,\mathrm{d}^{}\mathbf{{p_{}}}_{}\, \exp\Big({-\Big(\frac{\mathbf{{p_{}}}_{}}{A}-\frac{\mathring{\imath}\mathbf{{x}}_{}A}{2 \hbar} \Big)^2}\Big)}_{\sqrt{\pi}A}\exp\Big({- \frac{\mathbf{{x}}_{}^2A^2}{4 \hbar^2}}\Big)\\ &=\frac{\sqrt{2}A}{2 \pi}\exp\Big({-\frac{\mathbf{{x}}_{}^2}{2 \ell_\omega^2}}\Big). \end{aligned} \]

  • 22 \(A\) absorbs the various constants, with \(A=\sqrt{2}m\frac{\ell_c}{\ell_\omega}\) and \(\mathbf{{x}}_{0}\)

  • This elucidates more clearly the meaning of characteristic width, as \(\ell_\omega\) is the standard deviation of the wave-function in position space. Thus, the position-space wave-function grows sharper in the \(\ell_\omega^2 \to 0\) limit. For both wave-functions to simultaneously grow sharper in the classical limit, we must then have that \(\xi=(\frac{\ell_c}{\ell_\omega} )^2\to0\) remembering that the \(\hbar \to 0\) limit is just given by the \(\ell_c\to0\) one. Finally the meaning of classical limit in this context is the \(\xi \to 0\) limit.

    Going back to the general conditions, we want a wave-function \(f_{i}(p_{i})\) such that in the classical limit the momentum reaches its classical value: \(\breve{p_{i}}=m_{i}\breve{u_{i}}\), with \(\breve{u_{i}}\) the classical four-velocity of particle \(i\), normalized to \(\breve{u_{i}}^2=1\). In other words,

    \[ \langle p_{i}{}^{\mu}\rangle=\int \,\mathrm{d}\Phi_{}(p_{i})\, p_{i}{}^{\mu} \vert f_{i}(p_{i}) \vert^2\stackrel{!}{=}m_i \breve{u}_i^\mu (1+\mathcal{O}(\xi^{\beta'})), \]

    where \(\beta'\) encodes the speed at which the classical value is reached in the \(\xi\to0\) limit. The velocity normalization convergence is controlled by \(\beta''\) \[\breve{u}_i \cdot u_i = 1+ \mathcal{O}(\xi^{\beta''}),\]

    Finally wave-function’s spread is controlled by \(\beta\), and must converge to 0: \[\begin{aligned} \sigma^2(p_{i})/m_i^2&=\frac{1}{m_i^2}\langle(p_{i}-\langle p_{i}\rangle)^2\rangle\\&=\frac{1}{m_i^2}(\langle p_{i}^2\rangle-\langle p_{i}\rangle^2)\\&=\frac{1}{m_{i}^2}(m_{i}^2-(m_{i}\breve{u_{i}}(1+\mathcal{O}(\xi^{\beta'})))^2) \\&\propto\xi^\beta,\end{aligned}\]

    where \(\langle p_{i}^2\rangle=m_i^2\) is enforced by the measure \(\,\mathrm{d}\Phi_{}(p_{})\,\).

    Additionally, the wave-function should be Lorentz invariant, and naively we would have that \(f_{}(p_{i}^\mu)=f_{}'(p_{i}^2)\). However the integration measure enforces an on-shell condition: \(m_i^2=p_{i}^2\). Thus the wave-function cannot depend on \(p_{i}^2\), and we need to introduce at least one additional four vector parameter \(u\). The simplest dimensionless combination of parameters it then \(\frac{p_{}\cdot u }{m}\). Of course the wave-function must also depend on \(\xi\) and the simplest form of argument will thus be \(\frac{p_{}\cdot u }{m \xi}\) so that any \(p_{}\) not aligned with \(u\) will be strongly suppressed in the \(\xi \to0\) limit.

    We now have control over most of the conditions:

    • The classical limit is well-defined
    • The wave-function spread is controlled
    • The arguments of the wave-function are clear

    We can write a general wave-function that satisfies the above as:

    \[ f(\frac{p_{}\cdot u }{m}\vert\breve{u_{i}};m_{i} ;\beta^{(i)}). \]

    This function can take the form of a Gaussian, or something similar to eq. 5.5. Now there is one final requirement, that concerns the overlap of \(f_{}\) and \({f{}^\ast}_{}\) must be \(\mathcal{O}(1)\), equivalently and more precisely:

    \[ {f{}^\ast}_{}(p_{}+q_{})\sim {f{}^\ast}_{}(p_{}) \implies {f{}^\ast}_{}(p_{}+q_{})- {f{}^\ast}_{}(p_{})\ll 1 \implies q_{}{}^{\mu}\frac{\partial_{}^{} }{\partial_{}{p{}^{\mu}}^{}}{f{}^\ast}_{}(p_{})\ll1. \] Making explicit the \(\frac{p_{}\cdot u }{m \xi}\) dependence: \(f_{}(p_{})=\varphi(\frac{p_{}\cdot u }{m \xi})\) for \(\varphi(x)\) a scalar function. \[\implies \frac{q_{}{}^{\mu} u_\mu}{m \xi}\frac{\mathrm{d}^{} \varphi^*(x)}{\mathrm{d}{x}^{}}\Bigr|_{\frac{p_{}\cdot u }{m \xi}}\ll 1.\]

    Thus we require that for a characteristic value of \(q_{}=q_{}{}_{0}\) we have:

    \[ \frac{q_{}{}_{0}\cdot u}{m \xi}=\bar{q}_{}{}_{0} \cdot u\frac{\ell_\omega^2}{\ell_c}\ll1\iff \bar{q}_{}{}_{0} \cdot u\,\ell_\omega\ll \sqrt{ \xi}, \]

    having we denoted by a bar any quantity that has been rescaled by \(\hbar\). Thus, a momentum \(p_{}\), when divided by \(\hbar\) will be written \(\bar{p_{}}\) and called wave-number. We will combine this inequality with ones we obtain from the specific cases of integrations required above.

    We now want to examine the classical limit of the integrands of the form eq. 5.11. If we consider just the integration over the initial momenta \(p_{i}\) and the initial wave-functions with \(\tilde{\delta}^{}(2 p_{i} \cdot q_{}+q_{}^2)\), the delta function will smear out to a sharply peaked function whose scale is of the same order as the original wave-functions. As \(\xi\) gets smaller, this function will turn back into a Dirac delta function imposed on the \(q_{}\) integration. Let us examine this statement more closely. We are interested in the classical limit of the integrals such as:

    \[ d(m,\xi,u,q_{})=\int \,\mathrm{d}\Phi_{}(p_{})\, \tilde{\delta}^{}(2 p_{}\cdot q_{}+q_{}^2) \Theta^{{}}(p_{}^0+q_{}^0)\varphi \Big(\frac{p_{}\cdot u }{m \xi} \Big)\varphi^*\Big(\frac{(p_{}+q_{}) \cdot u }{m \xi} \Big). \tag{5.13}\]

    This integral must be Lorentz invariant and depends on \(m,\xi, u,q_{}\) thus it must manifestly only depend on the following Lorentz invariants: \(u^2,q_{}^2,u \cdot q_{}, \xi\). One of these is not actually a variable as we will normalise \(u^2=1\). The rest are not fully dimensionless, but we can render them dimensionless:

    \[ \begin{aligned} [q_{}^2 ] &=[\hbar \bar{q}_{}]^2=[M]^2\implies[\ell_c\sqrt{-\bar{q}_{}^2}]=[\frac{\hbar}{m}\sqrt{-\bar{q}_{}^2}]=\frac{[M]}{[M]}=1,\\ [u \cdot q_{}]&=[M]\implies [\frac{u \cdot\bar{q}_{}}{\sqrt{-\bar{q}_{}^2}}]= [\frac{u \cdot{q_{}}}{\sqrt{-{q_{}}^2}}]=\frac{[M]}{[M]}=1,\\ [\xi]&=1. \end{aligned} \]

    If we call \(\frac{1}{\sqrt{-\bar{q}_{}^2}}=\ell_s\) a scattering length23 then our dimensionless ratios become :

  • 23 \([\frac{1}{\sqrt{-\bar{q}_{}^2}}]=[T]=[L]=[\ell_s]\)

  • \[\frac{\ell_c}{\ell_s} \quad \text{and}\quad \ell_s\,\bar{q}_{}\cdot u .\]

    The Dirac delta function can then be rewritten as: \[ \tilde{\delta}^{}(2 p_{}\cdot q_{}+q_{}^2)=\tilde{\delta}^{}(2\hbar m\, u\cdot \bar{q}_{}+\hbar^2 \bar{q}_{}^2)=\frac{1}{\hbar m}\tilde{\delta}^{}(2 \bar{q}_{}\cdot u-\frac{\ell_c}{\ell_s^2})=\frac{\ell_s}{\hbar m}\tilde{\delta}^{}(2\ell_s\, \bar{q}_{}\cdot u-\frac{\ell_c}{\ell_s}). \]

    Performing the integration over \(p_{}\) in eq. 5.13 we obtain symbolically:

    \[ d(m,\xi,u,q_{})=\text{peaked function imposing that } {2\ell_s\, \bar{q}_{}\cdot u=\frac{\ell_c}{\ell_s}}\text{ with width } \xi^\beta. \]

    Fig 5.4: Sharpening gaussian

    Let us disucss the wave-function and the scales from a physical perspective. The characteristic width \(\ell_\omega\) is the particle’s position uncertainty, \(\frac{\hbar}{\ell_\omega}\) is the associated momentum uncertainty. In the classical limit the position uncertainty is neglible with respect to minimum distance between the particles \(\ell_s\):

    \[ \ell_\omega\ll \ell_s, \]

    and the momentum uncertainty is neglible with respect to the masses of the particles:

    \[ \frac{\hbar}{\ell_\omega}\ll m \implies \ell_c\ll \ell_\omega. \]

    Putting these together we obtain the goldilocks inequality:

    \[ \ell_c\ll\ell_\omega\ll\ell_s. \]

    Looking back at the arguments of \(d\) we see that

    \[ \ell_s\, \bar{q}_{}\cdot u\gg\ell_\omega\bar{q}_{}\cdot u \sim \sqrt{\xi} = \frac{\ell_c}{\ell_\omega}\gg\frac{\ell_c}{\ell_s}. \]

    Thus in the classical limit we have that \(d\) collapses to:

    \[ d(m,\xi,u,q_{})\propto\tilde{\delta}^{}( \bar{q}_{}\cdot u). \]

    Thus, the wave-function-weighted on-shell phase-space integration disappears in the classical limit. The resulting condition is that the integration momenta take on their physical values. The sequence that we have gone through should be done for all the integrands of type \(d\). We will not do this explicitly every time but instead apply the following rules:

    1. Just as for the massless transfer momentum any messenger momentum, be it transfer, virtual-loop or real emmission, shall become a wave-number: \(k\to \hbar \bar{k}\).
    2. Replace all couplings with their dimensionless counterparts: \(\kappa\to \frac{\kappa}{\sqrt{\hbar} }\) (this is only precisely true for SQED and gravity, which are the applications we are interested in).
    3. Eliminate all on-shell integrations by approximating \(f_{}(p_{}+\hbar\bar{q}_{})\) by \(f_{}(p_{})\).
    4. Laurent expand all the integrands in \(\hbar\).
    5. Make the integration momenta take on their physical values: \(p_{i}\to m_{i}\breve{u_{i}}\).

    To make this idea explicit we introduce the following notation, meaning that the steps above have been applied

    \[ \Bigg\langle\hspace{-0.6em}\Bigg\langle g(p_{1},p_{2},\dots)\Bigg\rangle\hspace{-0.6em}\Bigg\rangle\stackrel{\text{def}}{=}\int\limits \,\mathrm{d}\Phi_{}(p_{1})\,\,\mathrm{d}\Phi_{}(p_{2})\, \vert f_{1}(p_{1}) \vert^2\vert f_{2}(p_{2}) \vert^2\,g(p_{1},p_{2},\dots) \]

    We can now rewrite eq. 5.8

    \[ \Delta O\,= \Bigg\langle\hspace{-0.6em}\Bigg\langle \int \overbracket{\,\tilde{\mathrm{d}}^{4}q_{}\, \tilde{\delta}^{}(2p_{1}\cdot q_{}+q_{}^2)\Theta^{{}}(p_{1}{}^{0}+q_{}^0) \tilde{\delta}^{}(2p_{2}\cdot q_{}-q_{}^2)\Theta^{{}}(p_{2}{}^{0}+q_{}^0)}^{\,\mathrm{d}\Psi_{}(q_{})\,} \mathrm{e}^{{-\frac{\mathring{\imath}}{\hbar}}q_{}^\mu b_\mu}\Big(\mathcal{I'}_{\text{v}}(O)+\mathcal{I'}_{\text{r}}(O) \Big) \Bigg\rangle\hspace{-0.6em}\Bigg\rangle, \tag{5.14}\]

    where \[ \begin{aligned} \mathcal{I'}_{\text{v}}(O)&=\mathring{\imath}\, \underset{\mathclap{q_{}}}{\Delta}O\, \mathcal{A}^{}(p_{1},p_{2} \to p_{1}+q_{},p_{2}-q_{})\\ \mathcal{I'}_{\text{r}}(O)&=\sum\limits_X \int \,\mathrm{d}\Phi_{2+\vert X \vert}(r_1,r_2,X)\,\underset{\mathclap{rX-p_{}}}{\Delta}O\, \tilde{\delta}^{(4)}(p_{1}+p_{2}-r_{1}-r_{2}-r_{X}) \\ &\times \mathcal{A}^{}(p_{1}, p_{2} \to r_{1}, r_{2}, r_{X}) \mathcal{{A{}^\ast}}^{}(p_{1}+q_{}, p_{2}-q_{}\to r_{1}, r_{2}, r_{X}). \end{aligned} \]

    Additionally, we make clear the dependence on \(\hbar\) since we want to eventually take the \(\hbar \to0\) limit. We apply step 1. above, and change integration variables to \(\bar{q}_{}=\frac{q_{}}{\hbar}\) and absorb the \(\hbar\) dependence into the redefinition of the integrands and the measure:

    \[ \begin{aligned} \,\mathrm{d}\Psi_{}(q_{})\, &=\hbar^2\,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\, =\hbar^{\cancelto{2}{4}}\,\tilde{\mathrm{d}}^{4}\bar{q}_{}\, \cancel{\frac{1}{\hbar}}\tilde{\delta}^{}(2p_{1}\cdot\bar{q}_{}+\hbar\bar{q}_{}^2) \Theta^{{}}(p_{1}{}^{0}+q_{}^0) \cancel{\frac{1}{\hbar}}\tilde{\delta}^{}(2p_{1}\cdot \bar{q}_{}+\hbar\bar{q}_{}^2) \Theta^{{}}(p_{2}{}^{0}+q_{}^0), \end{aligned} \]

    \[ \begin{aligned} \overline{\mathcal{I}_{\text{v}}'}(O)&=\hbar^2\mathcal{I'}_{\text{v}}(O),\\ \overline{\mathcal{{I}}_{\text{r}}'}(O)&=\hbar^2\mathcal{I'}_{\text{r}}(O). \end{aligned}\]

    We can finally neatly write:

    \[\Delta O=\Bigg\langle\hspace{-0.6em}\Bigg\langle \int \,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\,\mathrm{e}^{-\mathring{\imath}\bar{q}_{}^\mu b_\mu}\Big(\overline{\mathcal{I}_{\text{v}}'}(O)+\overline{\mathcal{{I}}_{\text{r}}'}(O) \Big)\Bigg\rangle\hspace{-0.6em}\Bigg\rangle .\]

    The \(\hbar\) dependence is now entirely contained in the integrands (ignoring the \(\hbar \bar{q}_{}^2\) factors in the delta function). The classical limit of this observable is then simply,

    \[ \Delta O_{\text{classical}}=\lim_{\hbar\to0}\hbar^{\beta_{LO}}\Big[\int \,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\,\Big(\overline{\mathcal{I}_{\text{v}}'}(O)+\overline{\mathcal{{I}}_{\text{r}}'}(O) \Big) \Big], \]

    dropping the angle brackets, since these dissappear in the classical limit. Here \(\beta_{LO}\) is the LO \(\hbar\)-dependence of the observable. This is so that \(\Delta O_{\text{classical}}\sim\hbar^0\) i.e. classical scaling.

    5.4 Impulse in KMOC

    We can now explore the integrands for a specific observable. Consider the change in momentum, or impulse of particle 1. The KMOC formalisms gives us a way to write this as:

    \[\Delta p_{1}{}^{\mu}=\Bigg\langle\hspace{-0.6em}\Bigg\langle \int \,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\,\exp\Big({-\mathring{\imath}\bar{q}_{}^\mu b_\mu}\Big)\Big(\overline{\mathcal{I}_{\text{v}}'}(p_{1}{}^{\mu})+\overline{\mathcal{{I}}_{\text{r}}'}(p_{1}{}^{\mu}) \Big)\Bigg\rangle\hspace{-0.6em}\Bigg\rangle .\]

    We then have:

    \[ \begin{aligned} \overline{\mathcal{I}_{\text{v}}'}(p_{1}{}^{\mu})&=\hbar^2\mathring{\imath}\, q_{}\, \mathcal{A}^{}(p_{1},p_{2} \to p_{1}+\hbar \bar{q}_{},p_{2}-\hbar \bar{q}_{})\\ \overline{\mathcal{{I}}_{\text{r}}'}(p_{1}{}^{\mu})&=\hbar^2\int\mathllap{\sum}\,\mathrm{d}\Phi_{2+\vert X \vert}(r_1,r_2,r_X)\,(r_1^\mu-p_{1}^\mu)\,\tilde{\delta}^{(4)}(p_{1}+p_{2}-r_{1}-r_{2}-r_{X}) \\ &\times \mathcal{A}^{}(p_{1}, p_{2} \to r_{1}, r_{2}, r_{X}) \mathcal{{A{}^\ast}}^{}(p_{1}+\hbar \bar{q}_{},p_{2}-\hbar \bar{q}_{}\to r_{1}, r_{2}, r_{X}). \end{aligned} \]

    We can extract \(\hbar\) from \(q_{}\) and from the amplitude. In order to determine the \(\hbar\) scaling of \(\mathcal{A}^{}\) we extract each coupling constant \(\kappa\) along with an \(\frac{1}{\sqrt{\hbar}}\), so that quartic vertices yield a factor of \(\frac{\kappa^2}{\hbar}\) whereas cubic ones yield \(\frac{\kappa}{\sqrt{\hbar}}\)24. If we count the number \(V_3\) of all cubic vertices, \(V_4\) the number of quartic vertices, and so on, we have that the number of internal lines is \(I=\frac{1}{2}(\sum_{d=3}dV_d-E)\). This is because we have \(\sum_{d=3}dV_d\) lines to start with, out of which \(E\) are chosen to be external. The remaining \((\sum_{d=3}dV_d-E)\) ones are contracted in pairs among themselves to form \(I\) internal lines, yielding the factor of \(\tfrac{1}{2}\). In our case we have \(E=4+M\) where \(M=\vert X \vert\) is the number of messenger particles. Using the argument from loop counting we have that the number of loops of our graph \(L\) is given by: \[ \begin{aligned} L=I-V+N=&\frac{1}{2}(\sum_{d=3}d\cdot V_d-4-M)-\sum_{d=3}V_d+1\\ =&\frac{1}{2}(\sum_{d=3}(d-2)V_d)-1-\frac{M}{2}, \end{aligned} \]

  • 24 as mentioned in the last section, this is true for gravity and SQED and we will extend this fact to schematically rescale the vertex coupling by \(\hbar^-\frac{d-2}{2}\), for \(d\) the degree of the vertex in question.

  • where \(N\) is the number of connected components (\(=1\) in our case) . Thus, we see that the amount of extracted \(\hbar\)s corresponds directly to the number of loops plus one plus the number of additional messenger particles. 25 We can thus write the amplitude \(\mathcal{A}^{}\) as a sum over reduced \(L\)-loop amplitudes \(\mathcal{\bar{A}}^{(L)}\):

  • 25 The number of extracted couplings being twice that.

  • \[\mathcal{A}^{}(p_{1},p_{2}\to r_1,r_2,X)=\sum\limits_{L=0}^\infty\Big(\frac{\kappa^{2}}{\hbar} \Big)^{(L+1+\frac{\vert X \vert}{2})}\mathcal{\bar{A}}^{(L)}(p_{1},p_{2}\to r_1,r_2,X).\]

    Going back to the integrands we have:

    \[ \begin{aligned} \overline{\mathcal{I}_{\text{v}}'}(p_{1}{}^{\mu})&=\hbar^3\mathring{\imath}\, \bar{q}_{}\, \sum\limits_{L=0}^\infty\Big(\frac{\kappa^{2}}{\hbar} \Big)^{(L+1)}\mathcal{\bar{A}}^{(L)}(p_{1},p_{2}\to p_{1}+\hbar \bar{q}_{},p_{2}-\hbar\bar{q}_{})\\ &=\mathring{\imath}\, \hbar \bar{q}_{}\, \sum\limits_{L=0}^\infty \kappa^{2(L+1)}{\hbar}^{(1-L)}\mathcal{\bar{A}}^{(L)}(p_{1},p_{2}\to p_{1}+\hbar \bar{q}_{},p_{2}-\hbar\bar{q}_{}), \end{aligned} \tag{5.15}\]

    as well as the real kernel:26

  • 26 We changed the integration variable from \(r_i\) to \(w_i=r_i-p_{i}\) thus the measure changes:\[\,\mathrm{d}\Phi_{2+\vert X \vert}(r_1,r_2,X)\,=\,\mathrm{d}\Phi_{\vert X \vert}(r_X)\,\prod\limits_{i=1,2}\,\tilde{\mathrm{d}}^{4}w_i\,\tilde{\delta}^{}(2p_{i} \cdot w_i+w_i^2)\Theta^{{}}(p_{i}^0+w_i^0)\] where we used the same reasoning as for the \(q_i\) variable change.

  • \[ \begin{aligned} \overline{\mathcal{{I}}_{\text{r}}'}(p_{1}{}^{\mu})&=\hbar^2\int\mathllap{\sum}\,\mathrm{d}\Phi_{\vert X \vert}(r_X)\,\Big[\prod\limits_{i=1,2}\,\tilde{\mathrm{d}}^{4}w_i\,\tilde{\delta}^{}(2p_{i} \cdot w_i+w_i^2)\Theta^{{}}(p_{i}^0+w_i^0) \Big] \\ &\times w_1^\mu\,\tilde{\delta}^{(4)}(w_1+w_2+r_{X}) \\ &\times\mathcal{A}^{}(p_{1}, p_{2} \to p_{1}+w_{1}, p_{2}+w_{2}, r_{X}) \mathcal{{A{}^\ast}}^{}(p_{1}+\hbar \bar{q}_{},p_{2}-\hbar \bar{q}_{}\to p_{1}+w_{1}, p_{2}+w_{2}, r_{X})\\ \end{aligned} \]

    \[ \begin{aligned} =\hbar^2\int\mathllap{\sum}&\,\mathrm{d}\Phi_{\vert X \vert}({r}_X)\,\Big[\prod\limits_{i=1,2}\hbar^3\,\tilde{\mathrm{d}}^{4}\bar{w}_i\,\tilde{\delta}^{}(2p_{i} \cdot \bar{w}_i+\hbar\bar{w}_i^2)\Theta^{{}}(p_{i}^0+\hbar \bar{w}_i^0) \Big] \\ &\times \hbar \bar{w}_1^\mu\,\hbar^{-4}\tilde{\delta}^{(4)}(\bar{w}_1+\bar{w}_2+\bar{r}_{X}) \\ &\times \sum\limits_{L=0}^\infty \sum\limits_{L'=0}^\infty\Big(\frac{\kappa^{2}}{\hbar} \Big)^{(L+L'+2+\vert X \vert)}\mathcal{\bar{A}}^{(L)}(p_{1}, p_{2} \to p_{1}+\hbar\bar{w}_{1}, p_{2}+\hbar\bar{w}_2, r_{X}) \\ &\times\mathcal{{\bar{A}{}^\ast}}^{(L')}(p_{1}+\hbar \bar{q}_{},p_{2}-\hbar \bar{q}_{}\to p_{1}+\hbar\bar{w}_{1}, p_{2}+\hbar\bar{w}_2, r_{X}) \end{aligned} \]

    \[ \begin{aligned} =\int\mathllap{\sum}&\,\mathrm{d}\Phi_{\vert X \vert}({r}_X)\,\Big[\prod\limits_{i=1,2}\,\tilde{\mathrm{d}}^{4}\bar{w}_i\,\tilde{\delta}^{}(2p_{i} \cdot \bar{w}_i+\hbar\bar{w}_i^2)\Theta^{{}}(p_{i}^0+\hbar \bar{w}_i^0) \Big] \\ &\times \hbar\bar{w}_1^\mu\,\tilde{\delta}^{(4)}(\bar{w}_1+\bar{w}_2+\bar{r}_{X}) \\ &\times\sum\limits_{L=0}^\infty \sum\limits_{L'=0}^\infty \kappa^{2(L+L'+2+\vert X \vert)}{\hbar}^{2-L-L'-\vert X \vert}\mathcal{\bar{A}}^{(L)}(p_{1}, p_{2} \to p_{1}+\hbar\bar{w}_{1}, p_{2}+\hbar\bar{w}_2, r_{X}) \\ &\times\mathcal{{\bar{A}{}^\ast}}^{(L')}(p_{1}+\hbar \bar{q}_{},p_{2}-\hbar \bar{q}_{}\to p_{1}+\hbar\bar{w}_{1}, p_{2}+\hbar\bar{w}_2, r_{X}).\\ \end{aligned} \tag{5.16}\]

    Schematically we have

    \[ \begin{aligned} \overline{\mathcal{I}_{\text{v}}'}(p_{1}{}^{\mu})&=\sum\limits_{L=0}^\infty \mathcal{O}(\kappa^{{2(L+1)}}),\\ \overline{\mathcal{{I}}_{\text{r}}'}(p_{1}{}^{\mu})&=\sum\limits_{L=0}^\infty \sum\limits_{L'=0}^\infty \mathcal{O}(\kappa^{{2(L+L'+2)+2\vert X \vert}}) \end{aligned} \]

    The contributions from the virtual kernel are lower order in the coupling \(\kappa\) for a given loop order. Both kernels contribute together provided that the following equation is verified:

    \[L-1=\tilde{L}+\tilde{L}'+\vert X \vert. \tag{5.17}\]

    where \(L\) is the loop count for the virtual kernel, and \(\tilde{L}\),\(\tilde{L}'\) and \(\vert X \vert\) are the real kernel loop count and messenger particle count respectively. Note that for a tree level virtual kernel, the real-kernel match does not exist. The real kernel is only present for \(L>0\). When taking the classical limit we will only retain contributions from graphs that cancel the \(\hbar\) divergences in each corresponding kernel. Thus, at the \(L\)-loop level, the amplitude in the virtual kernel must cancel with terms of order

    \[ \hbar^{1-L+O}, \tag{5.18}\]

    where the \(O\) term is the order of \(\hbar\) that is present as a result of the observable. In the case of particle 1’s momentum, \(O=1\). Similarly, the amplitudes in the real kernel must cancel with:

    \[ \hbar^{2-\tilde{L}+\tilde{L}'-\vert X \vert+O}. \tag{5.19}\]

    Now we see that the LO contribution 27to the impulse, which we denote \(\Delta p_{1}^{\mu,(0)}\) can only be from the virtual kernel at tree level. Thus, we have the following equation,

  • 27 Here the expansion is in powers of the coupling constant, so even though we want \(\hbar\)s to cancel, the loop order will still affect the order of the contribution through the coupling constant \(\kappa\) and the LO corresponds to \(\kappa\)

  • \[ \Delta p_{1}^{\mu,(0)}=\Bigg\langle\hspace{-0.6em}\Bigg\langle \int \,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\,\exp\big({-\mathring{\imath}\bar{q}_{}^\mu b_\mu}\big)\ \overline{\mathcal{I}_{\text{v}}'}(p_{1}{}^{\mu})^{(L=0)}\Bigg\rangle\hspace{-0.6em}\Bigg\rangle. \tag{5.20}\]

    And the integrand is given by the tree level 4 point amplitude.

    \[ \overline{\mathcal{I}_{\text{v}}'}(p_{1}{}^{\mu})^{L=0}=\mathring{\imath}\, \bar{q}_{}^\mu\, \kappa^{2}{\hbar}^{2}\bar{\mathcal{A}}^{(0)}(p_{1},p_{2}\to p_{1}+\hbar \bar{q}_{},p_{2}-\hbar\bar{q}_{}). \]

    At Next-to-Leading Order (NLO) i.e. \(\kappa^4\) order, both integrands contribute, as eq. 5.17 can be satisfied for \(L=1\), \(L'=0\) and \(\vert X \vert=2\). Thus we have the following equation:

    \[ \Delta p_{1}^{\mu,(1)}=\Bigg\langle\hspace{-0.6em}\Bigg\langle \int \,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\,\exp\big({-\mathring{\imath}\bar{q}_{}^\mu b_\mu}\big) \Big(\overline{\mathcal{I}_{\text{v}}'}(p_{1}{}^{\mu})^{(L=1)}+\overline{\mathcal{{I}}_{\text{r}}'}(p_{1}{}^{\mu})^{(L=0,L'=0)} \Big)\Bigg\rangle\hspace{-0.6em}\Bigg\rangle. \tag{5.21}\]

    The virtual integrand is now given by the 1-loop level amplitude, and the real integrand is given by the square of a the tree level amplitude. This process can go on indefinitely, and is independent of the type of observable and the theory. Here we considered the change of momentum a particle, which for a black hole very far away would be very difficult to measure. However, we can also consider an observable such as the four-momentum of the radiated particles, or more precisely its expectation value. Of course, the operator corresponding to this observable gives zero when acting on the initial momentum states, and only gives a non-zero result when acting on the messenger states. Thus, for this observable only the real integrand, starting with \(\vert X \vert=1\) will contribute, the LO contribution being given by what is essentially the unitarity cut of a two loop amplitude. We see that regardless of observable, the objects that are needed are the amplitudes.

    For each loop level, many diagrams can contribute, but the classical limit enforces that they must cancel the \(\hbar\) orders given by eq. 5.19 and eq. 5.18. The cancellation order is dependent on the considered observable and filters the contributing diagrams. It can also be reformulated in the language of the method of regions.

    To see the whole machinery in action, let us take SQED as an example theory, that shows the relevant subtleties of the formalism.

    5.5 SQED amplitudes

    We want to couple a set of massive scalar fields to electromagnetism. We will use the minimal coupling prescription to ensure that the resulting Lagrangian exhibits the required gauge symmetry. The minimal coupling prescription works provided that our free mass Lagrangian admits a conserved current. Our free mass Lagrangian for two complex scalar fields with different masses is:

    \[ \mathcal{L}_m=\sum\limits_{i=1}^2 \partial_\mu \phi_i^\dagger\,\partial^\mu \phi_i - m_i^2 \phi^\dagger_i \phi_i. \]

    Notice that under the following transformation:

    \[ \begin{aligned} \phi_i(x) &\rightarrow \mathrm{e}^{-\mathring{\imath}Q_{i} \lambda} \phi_i(x), \\ \phi_i^{\dagger}(x) &\rightarrow \mathrm{e}^{\mathring{\imath}Q_{i} \lambda} \phi_i^\dagger(x) ,\\ \end{aligned} \]

    or infinitesimally:

    \[ \begin{aligned} \delta\phi_i &= -\mathring{\imath}\phi_i Q_{i} \delta\lambda ,\\ \delta\phi_i^{\dagger} &= \mathring{\imath}\phi_i^\dagger Q_{i}\delta \lambda,\\ \end{aligned} \]

    the above Lagrangian is unchanged. We will identitfy \(Q_{i}\) with the charge, in units of \(e\), of each particle. If we upgrade the parameter \(\lambda\) to a spacetime function \(\lambda(x)\), the Lagrangian is not invariant anymore and invariance is restored if we replace all the derivatives \(\partial_\mu\) with the gauge-covariant derivatives \(D_\mu\):

    \[D_\mu=\partial_\mu+\mathring{\imath}\,e\,Q_{i}\,A_\mu,\]

    i.e., if along with the transformation above, we perform a gauge transformation of the photon field:

    \[A_\mu\rightarrow A_\mu + \frac{1}{e} \partial_\mu \lambda\]

    or infinitesimally

    \[\delta A_\mu = \frac{1}{e} \partial_\mu \delta \lambda,\]

    then the whole Lagrangian:

    \[\mathcal{L}_{ED}+\mathcal{L}_{m}(\phi_i,\partial_\mu \phi_i)\rightarrow \mathcal{L}_{ED}+\mathcal{L}_{m}(\phi_i,D_\mu \phi_i),\]

    is invariant under the above defined gauge transformation. The final Lagrangian is:

    \[\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\sum_{i=1}^{2}\left[\left(D_{\mu} \phi_{i}\right)^{\dagger}\left(D^{\mu} \phi_{i}\right)-m_{i}^{2} \phi_{i}^{\dagger} \phi_{i}\right],\]

    with \(F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\). Expanding and then integrating by parts:

    \[ \begin{aligned} \mathcal{L} &=-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right) +\sum_{i=1}^{2}\left[ \left(\partial_{\mu}-\mathring{\imath}\, e\,Q_{i}\, A_{\mu} \right)\phi_{i}^{\dagger} \left(\partial_{\mu}+\mathring{\imath}\, e\,Q_{i}\, A_{\mu}\right)\phi_{i} -m_{i}^{2} \phi_{i}^{\dagger} \phi_{i} \right] \\ &=\underbrace{ \frac{1}{2} A_{\mu}\left[\eta^{\mu \nu}\partial^{2}-\partial^{\mu} \partial^{\nu}\right] A_{\nu} +\sum\limits_{i=1}^2-\phi_i^{\dagger}\left(\partial^{2}+m_i^{2}\right) \phi_i }_{\mathcal{L}_{0}} +\underbrace{ \sum\limits_{i=1}^2q_i^2\,e^{2} A_{\mu} A^{\mu} \,\phi^{\dagger}_i \phi_i -\mathring{\imath}\, e\,Q_{i}\, A_{\mu}\left(\phi^{\dagger}_i \partial^{\mu} \phi_i-\left(\partial^{\mu} \phi^{\dagger}_i\right) \phi_i\right) }_{\mathcal{L}^{\prime}}. \end{aligned} \]

    Since we have a massless photon, and still have gauge freedom we have to implement gauge fixing in the usual way:

    \[ \begin{aligned}\mathcal{L}_{\text{eff}} &=\mathcal{L}+\overbracket{\frac{-1}{2 \xi}(\partial_\mu A^\mu)^2}^{\mathcal{L_\text{GF}}}\\ &= \frac{1}{2} A_{\mu}\underbracket{\Bigg[g^{\mu \nu}\partial^{2}-\Big(1-\frac{1}{\xi} \Big)\partial^{\mu} \partial^{\nu} \Bigg]}_{\rightarrow \tilde{D}^{{\mu \nu}}_\xi(k)=\frac{-\mathring{\imath}}{k^{2}+\mathring{\imath}\varepsilon}\left[g_{\mu \nu}-(1-\xi) \frac{k_{\mu} k_{\nu}}{k^{2}}\right]} A_{\nu} +\sum\limits_{i=1}^2-\phi_i^{\dagger}\underbracket{(\partial^{2}+m_i^{2} )}_{\tilde{\Delta}_F(q^2)=\frac{\mathring{\imath}}{p^{2}-m^{2}+\mathring{\imath}\varepsilon}} \phi_i\\ &+ \sum\limits_{i=1}^2\underbracket{Q_{i}^2\,e^{2}\,\eta^{\mu \nu}}_{\times 2\mathring{\imath}\rightarrow \mathrm{4-vertex} } A_{\mu} A_{\nu} \,\phi^{\dagger}_i \phi_i \underbracket{-\mathring{\imath}\, e\,Q_{i}\, A_{\mu}\left(\phi^{\dagger}_i \partial^{\mu} \phi_i-\left(\partial^{\mu} \phi^{\dagger}_i\right) \phi_i\right)}_{\times \mathring{\imath}\rightarrow \mathrm{3-vertex}}. \end{aligned} \]

    In the last lines we identify the terms contributing to the Feynman rules. They are given in Table 5.1

    Tbl 5.1: Feynman rules for SQED
    For every Write

    internal photon line \(\tilde{D}^{{\mu \nu}}_\xi( \ell)=\frac{-\mathring{\imath}}{ \ell^{2}+ \mathring{\imath}\varepsilon}\left[\eta_{\mu \nu}-(1-\xi) \frac{\ell_{\mu} \ell_{\nu}}{ ell^{2}}\right]\)

    internal scalar \(\tilde{\Delta}_F(k^2)=\frac{\mathring{\imath}}{k^{2}-m^{2} +\mathring{\imath}\varepsilon}\)

    \(\phi_i \phi_i^\dagger A_\mu A_\nu\) vertex \(2 \mathring{\imath}Q_{i}^2\,e^2\,\eta^{\mu \nu}\)

    \(\phi_i(k_i) \phi_i^\dagger(k'_i) A_\mu\) vertex \(\mathring{\imath}e\,Q_{i}\,(k_i^\mu- k_i^{\prime\mu})\)

    External scalar \(\times 1\)

    \(\left\{\begin{array}{c} \text { incoming } \\ \text { outgoing } \end{array}\right\}\) photon \(\times \left\{\begin{array}{c}\varepsilon_{\mu} \\ \varepsilon_{\mu}^{* \prime} \end{array}\right\}\), with \(\varepsilon \cdot k=0, \varepsilon^{\prime} \cdot k^{\prime}=0\)

    where we consider only incoming momenta and the arrows denote incoming or outgoing particles. For the photon, we will take the Feynamn gauge, setting \(\xi=1\) and thus \(\tilde{D}^{{\mu \nu}}_1(\ell)=\tilde{D}^{{\mu \nu}}(\ell)=\frac{-\mathring{\imath}\eta^{\mu \nu}}{\ell^{2}+\mathring{\imath}\varepsilon}\).

    5.5.1 Expansions and simplifications

    Notice that if we rescale all photon momenta (taking them to be the loop momenta) by \(\hbar\) or equivalently take them to be in the soft region: \(\vert k \vert\sim\vert q \vert\ll \vert p \vert\), where \(p\) is the external momenta, then the photon propagator scales homogeneously in \(\hbar\), typically:

    \[ \frac{1}{(\ell-q_{})^2}=\frac{1}{\hbar^2}\frac{1}{(\bar{\ell}-\bar{q}_{})^2}, \tag{5.22}\]

    thus contributes \(\mathcal{O}(\hbar^{-2})\) to the overall diagram. The matter propagator on the other hand, has inhomogeneous \(\hbar\) scaling, as we do not rescale the external momenta, (or equivalently the external momenta are not restricted by the regions). Note that we will not consider internal mass loops as the soft limit means that massive pair production is forbidden, thus massive propagators necessarily route an external momentum. We can nonetheless expand a generic massive propagator in the soft limit:

    \[ \begin{aligned} \frac{1}{(\ell-p_{i})^2-m_{i}^2}&=\frac{1}{\ell^2-2\ell\cdot p_{i} +\cancel{p_{i}^2}-\cancel{m_{i}^2}}= \frac{1}{\hbar^2\bar{\ell}^2-2\hbar \bar{\ell}\cdot p_{i}}\\ &=-\frac{1}{\hbar} \frac{1}{2\bar{\ell}\cdot p_{i}}(1+\hbar\frac{ \bar{\ell}^2}{2\bar{\ell}\cdot p_{i}}+\hbar^2\frac{ \bar{\ell}^4}{(2\bar{\ell}\cdot p_{i})^2}+\dots ).\\ \end{aligned} \tag{5.23}\]

    In other contexts one may say that the matter propagator has eikonalized (it is now linear in \(\ell\)). Before we compute the amplitudes let us set up some useful kinematic identities and variables. If we consider the two-to-two particle scattering, taking an all outgoing momentum convention we have the following masses:

    \[ m_{1}^2=p_{4}^2 =p_{1}^2,\quad m_{2}^2=p_{2}^2 =p_{3}^2, \tag{5.24}\]

    and Mandelstahm variables:

    \[ s=(p_{1}+p_{2})^2,\quad t=q_{}^2=(p_{1}+p_{4})^2,\quad u=(p_{1}+p_{3})^2 , \]

    subject to the usual equation:

    \[ s+t+u=2(m_{1}^2+m_{2}^2). \]

    We can also change the external momentum variables to ones more amenable to the soft limit, namely:

    \[ p_{1}=-\big(\tilde{p}_{1}-\frac{q_{}}{2} \big), p_{2}=-\big(\tilde{p}_{2}+\frac{q_{}}{2} \big), p_{3}=\big(\tilde{p}_{2}-\frac{q_{}}{2} \big), p_{4}=\big(\tilde{p}_{1}+\frac{q_{}}{2} \big) . \tag{5.25}\]

    The new momentum variables \(\tilde{p}_{i}\) are crucially orthogonal to momentum transfer \(q_{}\) :28

  • 28 we use eq. 5.24

  • \[ \tilde{p}_{i}\cdot q_{}=0, \tag{5.26}\]

    and the physical scattering region, given by \(s>(m_{1}+m_{2})^2\) and \(q_{}^2<0\) is the given by the same formulas:

    \[ s=\Big(-\big(\tilde{p}_{1}-\frac{q_{}}{2} \big)-\big(\tilde{p}_{2}+\frac{q_{}}{2} \big) \Big)^2=(\tilde{p}_{1}+\tilde{p}_{2})^2 \]

    and

    \[ t=\Big(-\big(\tilde{p}_{1}-\frac{q_{}}{2} \big)+\tilde{p}_{1}+\frac{q_{}}{2} \Big)^2 = q_{}^2. \]

    With all the ingredients in place, we can now go on to compute the amplitudes.

    5.5.2 Tree level

    We start with the tree level amplitude, the only LO contribution in for example eq. 5.20. The only possible diagram we can build with four external scalar legs, and vertices as defined in Table 5.1, is the following tree:

    Tree

    The amplitude is read off diagram and using Feynman rules for SQED we have:

    \[ \mathcal{\bar{A}}^{(0)} = \mathring{\imath}\tilde{D}^{{\mu \nu}}(q)\cdot \,e^2Q_{1} Q_{2}2 \tilde{p}_{1}{}^{\mu} 2\tilde{p}_{2}{}^{\nu}=\frac{4e^2Q_{1} Q_{2}\tilde{p}_{1}\cdot\tilde{p}_{2}}{q_{}^2} , \]

    using the Mandelstahm invariants described above we can write this as:

    \[ \mathcal{\bar{A}}^{(0)} =e^2Q_{1} Q_{2} \frac{4m_{1}m_{2}\sigma}{\hbar^2\bar{q}_{}^2}, \tag{5.27}\]

    where \(\sigma\) is the relativistic factor of particle 1 in the rest frame of particle 2:

    \[ \sigma=\frac{s-m_{1}^2-m_{2}^2}{2m_{1}m_{2}}=\frac{p_{1}\cdot p_{2}}{m_{1}m_{2}}=\frac{\tilde{p}_{1}\cdot\tilde{p}_{2}}{m_{1}m_{2}}+ \mathcal{O}(\hbar^{}). \tag{5.28}\]

    We now input the reduced version \(\mathcal{\bar{A}}^{(0)}e^2=\mathcal{A}^{(0)}\) of the amplitude, and take the \(\hbar\to0\) limit of eq. 5.20. We can safely take the \(\hbar \to 0\) limit as the integrand contains no terms singular in \(\hbar\) (the \(\frac{1}{\hbar^2}\) is cancelled by the \(\hbar^2\) pre-factor). Notice that the integration measure eq. 5.14 simplifies in the classical limit:29

  • 29 Compare to \[\begin{aligned}\,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\,&=\,\tilde{\mathrm{d}}^{4}\bar{q}_{}\, \tilde{\delta}^{}(2p_{1}\cdot\bar{q}_{}+\hbar\bar{q}_{}^2)\Theta^{{}}(p_{1}{}^{0}+q_{}^0)\\& \tilde{\delta}^{}(2p_{1}\cdot \bar{q}_{}+\hbar\bar{q}_{}^2)\Theta^{{}}(p_{2}{}^{0}+q_{}^0)\end{aligned}\] The theta functions cancel as \(q_{}^0\to0\) and \(p_{i}\) becomes classical.

  • \[ \lim\limits_{\hbar \to0} \,\mathrm{d}\overline{\Psi}_{}(\bar{q}_{})\,=\,\tilde{\mathrm{d}}^{4}\bar{q}_{}\, {\tilde{\delta}^{}(2m_{1}\breve{u_{1}}\cdot\bar{q}_{})}{\tilde{\delta}^{}(2m_{2}\breve{u_{2}}\cdot \bar{q}_{})}. \]

    The integrand corresponding to the LO contribution to the impulse is then:

    \[ \Delta p_{1}^{\mu,(0)}=4e^2Q_1Q_2m_{1}m_{2}\sigma\int\,\tilde{\mathrm{d}}^{4}\bar{q}_{}\,\mathrm{e}^{-\mathring{\imath}\bar{q}_{}\cdot b}\bar{q}_{}^\mu \frac{\cancel{\hbar^2}}{\cancel{\hbar^2}\bar{q}_{}^2}{\tilde{\delta}^{}(2m_{1}\breve{u_{1}}\cdot\bar{q}_{})}{\tilde{\delta}^{}(2m_{2}\breve{u_{2}}\cdot \bar{q}_{})}. \]

    This can be analytically computed to find a closed form for the LO impulse.

    \[ \Delta p_{1}^{\mu,(0)}=-\frac{e^{2} Q_{1} Q_{2}}{2 \pi} \frac{\gamma}{\sqrt{\gamma^{2}-1}} \frac{b^{\mu}}{b^{2}} \]

    5.5.3 One loop

    Already at one loop the number of possible diagrams increases dramatically from 1 to 13. One can nonetheless enumerate them. As we increase loop count, the number of diagrams increases exponentially. It is therefore useful to have a systematic, programmatic way to handle these diagrams, and while we are at it, also to compute the amplitudes. Note that all the code needed to do these computations can be found on the repository for this book: https://github.com/lcnhb/GWAmplitudes.

    The first tool we will use is QGRAF  [23], a Fortran based program that can generate Feynman diagrams for a given set of vertices and external legs. The first step is to define the theory we want to derive the diagrams from. This is essentially writing down the Feynman rules, without actually specifying what the graphical objects are. For SQED the model file is short:

    SQEDmodel
    * propagators
     [Phi1,Phi1c,+]
     [Phi2,Phi2c,+]
     [Photon,Photon,+]
    
    * vertices
     [Phi1c,Photon,Phi1]
     [Phi2c,Photon,Phi2]
     [Phi1c,Photon,Photon,Phi1]
     [Phi2c,Photon,Photon,Phi2]

    This file also defines the names of the fields in question. We can then give QGRAF additional options, such as the number of external legs, and the number of loops, written in a qgraf.dat file that can look like this:

    qgraf.dat
    output= '{{output filename}}' ;
    style= './styles/julia.sty' ; 
    
    model= './qgraf/SQEDmodel';
    
    in= Phi1,  Phi2;
    out= Phi1,Phi2;
    loops= 1;
    loop_momentum= k;
    
    options=  notadpole,nosnail,onshell ;

    where we specify what process we are interested in (two-to-two scattering). We also specify that we want to compute the one loop amplitude, and that we want to use the julia.sty style file. The julia.sty file is a style file that is used to generate the output in a format that can be read by a Julia  [24] package built to process and visualise the outputted graphs. This package is called (maybe too broadly) QFT.jl, and is hosted on github . Let us see it in action. We can run QGRAF from the command line, and it will generate a file called {{output filename}} that contains the output of the program. We can then use this in a Julia file to visualize the diagrams.

    Code
    using Images
    using QFT
    using QFT.Diagrams
    using QFT.FieldGraphs
    using QFT.Fields
    import  Catlab.Graphics.Graphviz: pprint
    include("SQED.jl")
    diags=include("QGRAFout/julia/1lSQED.jl")
    
    
    qDiags=[qDiagram(;diag...) for diag in diags]
    grafs=(x -> x.g).(qDiags)
    println("::: {#fig-oneloopsqed  layout-ncol=4 .column-body-right }")
    for (i,graf) in enumerate(grafs)
    println("```{dot}")
    println("//| fig-width: 1.5")
        pprint(stdout,to_graphviz(graf,graph_attrs=Dict("layout"=>"neato")))
        println("```")
    end
    println("all one loop graphs in (?:sqed)")
    println(":::")
    nothing

    Fig 5.5: all one loop graphs in SQED

    G n1 n2 n1->n2 q₁ n1->n2 q₂ n1->n6 p₄ n2->n4 p₂ n3->n2 p₁ n5->n1 p₃

    G n1 n3 n1->n3 q₂ n1->n7 p₄ n2 n2->n1 q₁ n2->n3 q₃ n3->n5 p₂ n4->n3 p₁ n6->n2 p₃

    G n1 n3 n1->n3 q₂ n1->n5 p₂ n2 n2->n1 q₁ n2->n3 q₃ n3->n7 p₄ n4->n2 p₁ n6->n3 p₃

    G n1 n3 n1->n3 q₁ n1->n7 p₄ n2 n2->n3 q₃ n2->n5 p₂ n3->n2 q₂ n4->n3 p₁ n6->n1 p₃

    G n1 n3 n1->n3 q₁ n1->n7 p₄ n2 n2->n3 q₂ n2->n3 q₃ n3->n5 p₂ n4->n2 p₁ n6->n1 p₃

    G n1 n3 n1->n3 q₁ n1->n5 p₂ n2 n2->n3 q₃ n2->n7 p₄ n3->n2 q₂ n4->n1 p₁ n6->n3 p₃

    G n1 n3 n1->n3 q₁ n1->n5 p₂ n2 n2->n3 q₂ n2->n3 q₃ n3->n7 p₄ n4->n1 p₁ n6->n2 p₃

    G n1 n3 n1->n3 q₁ n1->n8 p₄ n2 n4 n2->n4 q₂ n2->n6 p₂ n3->n4 q₃ n4->n3 q₄ n5->n2 p₁ n7->n1 p₃

    G n1 n3 n1->n3 q₁ n1->n8 p₄ n2 n4 n2->n4 q₂ n2->n6 p₂ n3->n4 q₃ n4->n3 q₄ n5->n2 p₁ n7->n1 p₃

    G n1 n4 n1->n4 q₁ n1->n8 p₄ n2 n3 n2->n3 q₂ n2->n6 p₂ n3->n4 q₄ n4->n2 q₃ n5->n3 p₁ n7->n1 p₃

    G n1 n4 n1->n4 q₁ n1->n6 p₂ n2 n3 n2->n3 q₂ n2->n8 p₄ n3->n4 q₄ n4->n2 q₃ n5->n1 p₁ n7->n3 p₃

    G n1 n2 n1->n2 q₁ n1->n8 p₄ n2->n6 p₂ n3 n3->n1 q₂ n4 n3->n4 q₄ n4->n2 q₃ n5->n4 p₁ n7->n3 p₃

    G n1 n3 n1->n3 q₂ n1->n8 p₄ n2 n2->n1 q₁ n4 n2->n4 q₃ n3->n4 q₄ n4->n6 p₂ n5->n3 p₁ n7->n2 p₃

    We notice a few things about the diagrams in Figure 5.5 above. Not all the diagrams contribute to the classical limit. Clearly the diagrams with internal matter loops cannot be allowed when the momenta incoming to the loop is soft 30. In the classical limit this momentum will go to 0, and since the scalars are massive, they need momentum greater than their mass to be pair-produced, thus these diagrams do not contribute. Another class of diagrams that does not contribute to the classical limit are the ones with photon loops that start and end on the same matter line. These do not contribute because they are scaleless. An integral is scaleless when its integrand \(\mathcal{I}_\text{scaleless}(\{\ell_i \})\) scales homogeneously under any rescaling of the loop momentum \(\ell_i\):

  • 30 scales like \(\hbar\)

  • \[ \mathcal{I}_\text{scaleless}(\{\ell_i \})\stackrel{\ell_j\to\lambda \ell_j}{\longrightarrow}\lambda^\eta \mathcal{I}_\text{scaleless}(\{\ell_i \}) \]

    Thus, any diagram that has a basis of loops that does not contain both scalar fields (i.e. does not cross over) cannot have its scale set by the momentum transfer, and is thus scaleless. Dimensionally regularized scaleless integrals vanish, thus we can also discard these diagrams. We can easily implement such a filter programmatically, by checking that if cycles are present they touch either both types of scalars, or neither. To compute the cycle basis we use an algorithm derived from  [25], implemented in the DirectedHalfEdgeGraphs.jl package.

    Code
    using Logging
    Logging.disable_logging(Logging.Info)
    function scaleless(g::AbstractFieldGraph)
      cycles =cycle_basis(g)
      isscaleless=false
      for c in cycles
        hs= collect(Iterators.flatten(half_edges.(Ref(g),c)))
        fields=unique!(typeof.(field.(Ref(g),hs)))
        if Bool(Phi1 in fields)   Bool(Phi2 in fields)
          isscaleless=true
        end
      end
      return isscaleless
    end
    
    noscalelessdiags=qDiags[.!scaleless.(grafs)]
    classicaldiags=noscalelessdiags[2:end]
    for (i,d) in enumerate(classicaldiags)
      d.ID=i
    end
    
    println("::: {#fig-onefilterloopsqed  layout-ncol=5 .column-body-right }")
    for (i,graf) in enumerate(grafs[.!scaleless.(grafs)])
    println("```{dot}")
    println("//| fig-width: 1")
        pprint(stdout,to_graphviz(graf,graph_attrs=Dict("layout"=>"neato")))
        println("```")
    end
    println("one loop graphs that contribute to the classical limit in (?:sqed)")
    println(":::")
    nothing

    Fig 5.6: one loop graphs that contribute to the classical limit in SQED

    G n1 n2 n1->n2 q₁ n1->n2 q₂ n1->n6 p₄ n2->n4 p₂ n3->n2 p₁ n5->n1 p₃

    G n1 n3 n1->n3 q₂ n1->n7 p₄ n2 n2->n1 q₁ n2->n3 q₃ n3->n5 p₂ n4->n3 p₁ n6->n2 p₃

    G n1 n3 n1->n3 q₂ n1->n5 p₂ n2 n2->n1 q₁ n2->n3 q₃ n3->n7 p₄ n4->n2 p₁ n6->n3 p₃

    G n1 n2 n1->n2 q₁ n1->n8 p₄ n2->n6 p₂ n3 n3->n1 q₂ n4 n3->n4 q₄ n4->n2 q₃ n5->n4 p₁ n7->n3 p₃

    G n1 n3 n1->n3 q₂ n1->n8 p₄ n2 n2->n1 q₁ n4 n2->n4 q₃ n3->n4 q₄ n4->n6 p₂ n5->n3 p₁ n7->n2 p₃

    There is one final simplification we can do. The first diagram in Figure 5.6 has two photon propagators, and two quartic vertices, which give it the name: “double-seagull”. The photon propagators have homogeneous \(\hbar^{-2}\) scaling (see eq. 5.22), the vertices only bring constants, and the loop integration has \(\hbar^4\) scaling. Collecting all scalings this means that the reduced amplitude has \(\hbar^0\) scaling. However, in the virtual integrand the reduced amplitude has to cancel with the transfer momentum’s \(\hbar\) scale (see eq. 5.16). Thus, the double seagull diagram vanishes in the classical limit.

    We are left with only 4 diagrams, the two triangle diagrams, the box, and cross box, which we can now compute. At this point, we can do this manually, but again, putting in place a programmatic framework means that subsequent loops can be treated systematically 31. We will also extract one of these integrands by hand, for completeness and comparison.

  • 31 at least at the un-integrated level

  • The first step is to define the Feynman rules in a computer readable format. We will use Julia to apply these rules at every vertex and every edge, but for the actual computation we will use FORM  [26,27], which can automatically contract indices and performs expression manipulations in an optimized way. The Feynman rules implementation in the package developed for this thesis make use of Julias defining paradigm of multiple dispatch. This allows us to define the rules for each vertex and each edge in a very compact way. We can define the rules for SQED as follows:

    Code
    function feynmanRule(mime::MIME"text/FORM",p,f1::Photon,f2::Photon)
      momen = repr(mime,p.symbol)
      indx1 = repr(mime,index(f1))
      indx2 = repr(mime,index(f2))
      "_i* prop(-1,0,$momen)*d_($indx1,$indx2)"
    end
    
    @symmetric function feynmanRule(mime::MIME"text/FORM",p,[f1::Phi1,f2::Phi1c])
      momen = repr(mime,p.symbol)
      "_i* prop(-1,1,$momen)"
    end
    
    @symmetric function feynmanRule(mime::MIME"text/FORM",p,[f1::Phi2,f2::Phi2c])
      momen = repr(mime,p.symbol)
    
      "_i* prop(-1,2,$momen)"
    end
    
    @symmetric function feynmanRule(mime::MIME"text/FORM",[(pᵩ₁,a)::Tuple{Any,ScalarField{S}},
                (pᵩ₂,b)::Tuple{Any,AdjointField{ScalarField{S}}},
                (pᵧ,γ)::Tuple{Any,Photon}]) where {S}
      p1 = repr(mime,pᵩ₁(index(γ)))
      p2 = repr(mime,pᵩ₂(index(γ)))
      q = repr(mime,charge(a))
      "_i*e*$q*($p2-$p1)"
    end
    
    @symmetric function feynmanRule(mime::MIME"text/FORM",[(pᵧ₁,γ₁)::Tuple{Any,Photon},
                (pᵧ₂,γ₂)::Tuple{Any,Photon},(pᵩ₂,b)::Tuple{Any,AdjointField{ScalarField{S}}},
                (pᵩ₁,a)::Tuple{Any,ScalarField{S}}]) where {S}    
      mu = repr(mime,index(γ₁))
      nu = repr(mime,index(γ₂)) 
      q = repr(mime,charge(a))
      "2*_i*$q^2*e^2*d_($mu,$nu)"
    end 

    where we define prop(n,i,p) as representing a generic Feynman propagator, which we will denote:

    \[ D_{-}(n,i,p)=\mathtt{prop(n,i,p)}=(p^2-m_i^2+i\epsilon )^{n} \quad \text{thus} \quad \mathtt{prop(-1,i,p)}=\frac{1}{p^2-m_i^2+i\epsilon}. \]

    We can now apply these Feynman rules to the graphs we have left, obtaining FORM readable integrands. For example, the box diagram gives:

    Code
    ```{julia}
    toform(stdout,classicaldiags[3])
    ```
    *--#[d3l1:
    L [d3l1|o.3.4|i.3.4|i|o|] = 1*i_* prop(-1,0,q1)*d_(nu1,nu2)*i_* prop(-1,1,q2)*i_* prop(-1,2,q3)*i_* prop(-1,0,q4)*d_(nu7,nu8)*i_*e*qch1*(q2(nu1)-p4(nu1))*i_*e*qch2*(q3(nu2)-p2(nu2))*i_*e*qch1*(p3(nu7)-q2(nu7))*i_*e*qch2*(p1(nu8)-q3(nu8));
    #procedure momentumRouting
    Id q2 = p3 + -q4;
    Id p1 = p2 + p4 + -p3;
    Id q1 = p3 + -p4 + -q4;
    Id q3 = p2 + p4 + q4 + -p3;
    
    Id q4= l1;
    #endprocedure
    *--#]d3l1:

    Notice that we also define the momentum routing by imposing the replacement rules, one per vertex. This can be done in many ways but to ensure proper scaling we set the loop momenta to be homogeneous on the massless lines. This is done by the Julia program, using Kruskal’s algorithm  [28] to find the maximal-mass spanning tree of the graph, and then setting the loop momenta to be those internal edges that are missing from the tree. The maximal mass spanning tree of the box is visualised in Figure 5.7 .Using FORM, we can contract indices and apply the momentum conservation rules. Finally, we also apply the relabeling rules described in eq. 5.25. The FORM version of the box integrand is then given in Listing 5.1.

    Fig 5.7: The maximal mass spanning tree of the box diagram in blue. The loop momenta are the edges that are missing from the tree.

    Listing 5.1: Box integrand in FORM

    
       [d3l1|o.3.4|i.3.4|i|o|] =
             ( prop(-1,0,q - l1) )
           * ( prop(-1,0,l1) )
           * ( prop(-1,1,1/2*q - l1 + pb1) )
           * ( prop(-1,2, - 1/2*q + l1 + pb2) )
           * ( dot(q,q) - 2*dot(q,l1) - 2*dot(q,pb2) + 2*dot(q,pb1) + dot(l1,l1)
              + 2*dot(l1,pb2) - 2*dot(l1,pb1) - 4*dot(pb2,pb1) )
           * ( dot(l1,l1) + 2*dot(l1,pb2) - 2*dot(l1,pb1) - 4*dot(pb2,pb1) )
           * ( qch2 ) * ( qch2 ) * ( qch1 ) * ( qch1 )
           * ( e ) * ( e ) * ( e ) * ( e );

    When applied to all 4 diagrams, we obtain precisely the same integrands as those in  [14]. Additionally, we notice that the two triangles and the box diagram have overlapping propagators. In fact the denominators of the integrands for all three can be written as:

    \[ \Box_{i_1,i_2,i_3,i_4}=\frac{1}{\rho_1^{i_1}\rho_2^{i_2}\rho_3^{i_3}\rho_4^{i_4}}, \tag{5.29}\]

    for powers \(\{i \}\in\{0,1 \}^4\), where the inverse propagators \(\rho_i\) are:

    \[ \rho_1=\ell^2+\mathring{\imath}\epsilon,\quad \rho_2=(\ell-q)^2+\mathring{\imath}\epsilon,\quad \rho_3=(\frac{q}{2}-\ell+\tilde{p}_{1})^2-m_{1}^2+\mathring{\imath}\epsilon,\quad \rho_4=(- \frac{q}{2}+\ell+\tilde{p}_{2})^2-m_{2}^2+\mathring{\imath}\epsilon \]

    Note that in the classical limit we can expand the massive propagators as shown in eq. 5.23 and obtain, to first order in \(\hbar\),

    \[ \rho_3=2\ell\cdot\tilde{p}_{1}+\mathring{\imath}\epsilon,\quad \rho_4= -2\ell\cdot\tilde{p}_{2}+\mathring{\imath}\epsilon, \]

    where we used eq. 5.26. The cross box can in fact extend this family, by adding just one more inverse propagator. We now have the complete description of the denominators of all 1-loop contributing diagrams. The numerators in fact do not complicate things much. They are all composed of scalar products of momenta. If these do not contain loop-momenta they are just constant factors in front of the integral. The scalar products that do contain loop momenta can be written as inverse powers of the propagators. This is the case for any Feynman like integrand. Consider the following general integrand:

    \[ \mathcal{I}= \frac{\mathcal{N}}{\mathcal{D}}=\frac{\prod\limits_{S'}N_{S'}}{\prod\limits_{S}D_S}=\frac{\prod\limits_{S'}\sum\limits_{i\geq j} S'_{ij}p_i\cdot p_j}{\prod\limits_{S}\sum\limits_{i\geq j} S_{ij}p_i\cdot p_j}, \]

    where \({S}\) and \({S'}\) are sets of coefficient matrices for all possible dot products. If we have a quadruplet \(\{A,B,a,b \}\) such that \(A_{a,b}\neq0\) and \(B_{a,b}neq0\) and \(p_{a}\)or \(p_{b}\) is a loop momentum \(\ell\), say \(p_a=\ell\),then it is useful to write this component of the integrand as:

    \[ \frac{N_{B}}{D_{A}}=\frac{\tilde{N}_B+B_{ab}\ell\cdot p_b}{A_{ab}\ell\cdot p_b +\sum\limits_{\substack{i\geq j \\ i,j\neq a,b}}A_{ij}p_i\cdot p_j}=\frac{\tilde{N}_B}{D_A}+\frac{B_{ab}}{A_{ab}}\Big(1-\frac{\tilde{D}_A}{D_A} \Big), \tag{5.30}\]

    where the tilde means that we have remove the \(ab\) contribution. Thus, we see that we obtain a sum of objects in the numerator, none of which contains the dot product: \(\ell\cdot p_b\). We can do this for every quadruplet \(\{A,B,a,b \}\), after every replacement, and obtain an integrand containing only so called irreducible loop-momenta scalar products. In the cases we have here, they all disappear, leaving us truly with a family of integrands like eq. 5.29. This can be readily fed into a IBP solver, such as AIR  [29], FIRE  [30] or Kira  [31].

    With such a solver we can obtain a complete family of integrals, which can be evaluated. We are thus able to obtain the integrated integrands at NLO that are then used in eq. 5.16 and eq. 5.15. The algorithm described above was implemented in FORM and is able to rapidly process the 1-loop diagrams. The code is available in the repository for this thesis.

    Importantly, we still need to take the classical limit. At this point a problem shows up. The box and cross box integrals are divergent in the classical limit (some authors call this super classical). Let us see this for the box integral. We have from Listing 5.1 that the integral for the box diagram \(B\) is:

    \[ \mathring{\imath}B = e^4 Q_{1} Q_{2} \int \,\tilde{\mathrm{d}}^{D}\ell\, \\pa{4 \tilde{p}_{1}\cdot \tilde{p}_{2} + 2\ell\cdot(\tilde{p}_{2} -\tilde{p}_{1} ) -(q_{}-\ell )^2}(4 \tilde{p}_{1}\cdot \tilde{p}_{2} + 2\ell\cdot(\tilde{p}_{2} -\tilde{p}_{1} ) -(\ell )^2 )Box_{1,1,1,1} \]

    we can apply the procedure described above, turning messenger momenta into wave-numbers:

    \[ \mathring{\imath}B = e^4 Q_{1} Q_{2} \int \,\tilde{\mathrm{d}}^{D}\bar{\ell}\,\frac{\hbar^D}{\hbar^6} (4 \tilde{p}_{1}\cdot \tilde{p}_{2} + \hbar 2\bar{\ell}\cdot(\tilde{p}_{2} -\tilde{p}_{1} ) -\hbar^2(\bar{q}_{}-\bar{\ell} )^2 )(4 \tilde{p}_{1}\cdot \tilde{p}_{2} + \hbar 2\bar{\ell}\cdot(\tilde{p}_{2} -\tilde{p}_{1} ) -\hbar^2(\bar{\ell} )^2 )\Box_{\bar{1},\bar{1},\bar{1},\bar{1}}, \]

    where \(\Box_{\bar{i}_1,\bar{i}_2,\bar{i}_3,\bar{i}_4} =\frac{1}{\hbar^{2(i_1+i_2)+i_3+i_4}} \Box_{i_1,i_2,i_3,i_4}\) is the box family with wave-number instead of messenger momenta, and \(\hbar\)s extracted. We notice that if we apply the scalar product reduction eq. 5.30, we will necessarily still have an integral of the form 32:

  • 32 along with ones that are of the form \(\Box_{1,1,1,0}\) and other permutations. These are not divergent in the classical limit, as they have one less propagator, thus one less \(\hbar\), just enough to cancel what is left of the \(\hbar\) in the numerator, and have an overall \(\mathcal{O}(\hbar^{0})\) scaling.

  • \[ e^4 Q_{1} Q_{2} 16 (\tilde{p}_{1}\cdot \tilde{p}_{2})^2 \int \,\tilde{\mathrm{d}}^{D}{\ell}\,\Box_{1,1,1,1}=\mathcal{O}(\hbar^{D-6}). \]

    We need to cancel with the \(\hbar\) in the classical limit (eq. 5.18), here we have one too many orders in the denominator (if D=4). Thus, we would get a divergent (\(\frac{1}{\hbar}\)) contribution when taking the classical \(\hbar\to 0\) limit. If we consider now the cross box, which is the same family as above but with an extra minus sign:

    \[ \tilde{\rho}_4=( \frac{q}{2} -\ell+\tilde{p}_{2})^2-m_{2}^2+\mathring{\imath}\epsilon\simeq 2\ell\cdot\tilde{p}_{2}+\mathring{\imath}\epsilon. \]

    If we write that \(\Box_{i_1^+,i_2^+,i_3^+,i_4^+}=\Box_{i_1,i_2,i_3,i_4}\) where the sign is the sign of the \(\mathring{\imath}\epsilon\) prescription, then we can write the cross box integral as: \[ \int \,\tilde{\mathrm{d}}^{D}\ell\, -\Box_{1,1,1,1^-} \]

    thus summing up the two divergent contributions from the box and cross box we have:

    \[ \Box_{1,1,1,1}-\Box_{1,1,1,1^-}=\Box_{1,1,1,0}\Big(\frac{1}{-2\ell\cdot\tilde{p}_{2}+\mathring{\imath}\epsilon}-\frac{1}{ 2\ell\cdot\tilde{p}_{2}+\mathring{\imath}\epsilon} \Big)=-\mathring{\imath}\Box_{1,1,1,0}\tilde{\delta}^{}(2\ell\cdot\tilde{p}_{2}), \tag{5.31}\]

    where in the equation line we used reverse unitarity  [3234]. This idea was developed in the context of cross-section calculations in the for collider physics. It enables to set on equal footing real contributions 33 where we integrate over on shell momenta 34 and virtual integrals, where the integration is over all possible four-momentum 35. The idea is to trade the on-shell delta functions and their \(n\)-th derivatives for differences of (powers of) propagators with alternating \(\mathring{\imath}\epsilon\):

  • 33 such as ones in the real integrand eq. 5.10

  • 34 thus three dimensional momentum space

  • 35 as virtual particles can be off shell

  • \[ \frac{\mathring{\imath}}{(-1)^ nn!} \frac{\mathrm{d}^{n} }{\mathrm{d}{z}^{n}} \tilde{\delta}^{}(z) = \frac{1}{(z -\mathring{\imath}\epsilon )^{(n+1)}} - \frac{1}{(z+\mathring{\imath}\epsilon )^{(n+1)}}. \tag{5.32}\]

    In our case eq. 5.32 implies the following identities:

    \[ \tilde{\delta}^{}(-2\ell\cdot\tilde{p}_{2})=\mathring{\imath}(\Box_{0,0,0,1}-\Box_{0,0,0,1^-} ) \tag{5.33}\]

    \[ \tilde{\delta}^{}(2\ell\cdot\tilde{p}_{1})=\mathring{\imath}(\Box_{0,0,1,0}-\Box_{0,0,1^-,0} ) \tag{5.34}\]

    Since we were able to write this difference of propagators as a sort of cut, we could further compare the divergent part of the box and cross box with the corresponding real contribution, which is at tree level, with no cut messengers: \(L'=0\) and \(\vert X \vert=0\) such that eq. 5.17 is satisfied. We have:

    \[ \begin{aligned} \int &\,\tilde{\mathrm{d}}^{4}\bar{w}\,\tilde{\delta}^{}(2\tilde{p}_{1}\cdot \bar{w}-\hbar\frac{\bar{q}_{}}{2} \cdot \bar{w} +\hbar\bar{w}^2)\tilde{\delta}^{}(-2\tilde{p}_{2} \cdot \bar{w}+\hbar\frac{\bar{q}_{}}{2} \cdot \bar{w}+\hbar\bar{w}^2) \\ &\times \hbar\bar{w}^\mu\\ &\times\kappa^{4}{\hbar}^{2}\mathcal{\bar{A}}^{(0)}(\tilde{p}_{1}-\hbar\frac{\bar{q}_{}}{2},\tilde{p}_{2}+\hbar\frac{\bar{q}_{}}{2} \to\tilde{p}_{1}+\hbar\frac{\bar{q}_{}}{2}+\hbar\bar{w}, \tilde{p}_{2}-\hbar\frac{\bar{q}_{}}{2}-\hbar\bar{w}_2) \\ &\times\mathcal{{\bar{A}{}^\ast}}^{(0)}(\tilde{p}_{1}+\hbar\frac{\bar{q}_{}}{2},\tilde{p}_{2}+\hbar\frac{\bar{q}_{}}{2}-\hbar \bar{q}_{}\to\tilde{p}_{1}-\hbar\frac{\bar{q}_{}}{2}+\hbar\bar{w}, \tilde{p}_{2}+\hbar\frac{\bar{q}_{}}{2}- \hbar\bar{w}_2). \end{aligned} \]

    where the \(\mathcal{\bar{A}}^{(0)}\) we already computed in eq. 5.27, and we have eliminated the theta functions in preparation of taking the classical limit. Thus, it is essentially a cut of a one-loop box. Notice that in the classical limit we must cancel with \(\hbar^3\) (eq. 5.19) which at leading order is again overdone. The \(\tilde{p}_{1}\cdot \tilde{p}_{2}\) contribution from each tree scales like \(\frac{1}{\hbar^4}\), and is thus classically divergent as the box and cross box before it. We also notice it has the following form:

    \[ e^4 Q_{1} Q_{2} 16 (\tilde{p}_{1}\cdot \tilde{p}_{2})^2\frac{1}{\hbar}\int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,\bar{\ell}^\mu\tilde{\delta}^{}(2\tilde{p}_{1} \cdot \bar{\ell})\tilde{\delta}^{}(-2\tilde{p}_{2} \cdot \bar{\ell})\Box_{\bar{1},\bar{1},\bar{0},\bar{0}}, \]

    where we have changed variables from \(\bar{w}\) to \(\bar{\ell}\) and removed the \(\hbar(\frac{\bar{q}_{}}{2} \cdot \bar{\ell}\pm\bar{ \ell}^2)\) term in the delta functions, in preparation for the classical limit. We can now apply reverse unitarity (eq. 5.33,eq. 5.34) and focus on the integral without the pre-factors:

    \[ \begin{aligned} \int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,\bar{\ell}^\mu&\tilde{\delta}^{}(2\tilde{p}_{1} \cdot \bar{\ell})\tilde{\delta}^{}(-2\tilde{p}_{2} \cdot \bar{\ell})\Box_{\bar{1},\bar{1},\bar{0},\bar{0}} = \int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,\bar{\ell}^\mu\tilde{\delta}^{}(2\tilde{p}_{1} \cdot \bar{\ell})\mathring{\imath}(\Box_{0,0,0,1}-\Box_{0,0,0,1^-} )\Box_{\bar{1},\bar{1},\bar{0},\bar{0}} \\ &=-\int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,\bar{\ell}^\mu(\Box_{0,0,1,0}-\Box_{0,0,1^-,0} )(\Box_{1,1,0,1}-\Box_{1,1,0,1^-} ) ,\\ &=\int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,\bar{\ell}^\mu[(\Box_{1,1,1,1^-}-\Box_{1,1,1,1} )+(\Box_{1,1,1^-,1}-\Box_{1,1,1^-,1^-} ) ] . \end{aligned} \]

    We now notice something interesting, this cut integral has a sort of horizontal flip symmetry, i.e., if we average over the existing ‘loop’ momentum labelling and a new \(\ell'=q-\ell\) we eliminate the \(\ell{}^{\mu}\) dependence in the numerator:

    \[ \frac{1}{2}[\ell{}^{\mu}+(q{}^{\mu}-\ell{}^{\mu} ) ]=q{}^{\mu} \]

    since the box families transform as:

    \[ \Box'_{i,j,m,n}=(-1)^m(-1 )^n\Box_{j,i,-m,-n}. \tag{5.35}\]

    Thus we have that the cut integral with the \(\bar{q}_{}{}^{\mu}\) factored out:

    \[ \int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,\frac{1}{2}[(\Box_{1,1,1,1^-}-\Box_{1,1,1,1} )+(\Box_{1,1,1^-,1}-\Box_{1,1,1^-,1^-} ) ] . \]

    We can apply the relabeling only this time only for the last two integrands, and the integral becomes, applying eq. 5.35:

    \[ \int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,\frac{1}{2}[(\Box_{1,1,1,1^-}-\Box_{1,1,1,1} )+(\Box'_{1,1,1^-,1}-\Box'_{1,1,1^-,1^-} ) ]= \int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,(\Box_{1,1,1,1^-}-\Box_{1,1,1,1} ) . \]

    If we now add the box and cross box contributions from eq. 5.31 we get:

    \[ \int \,\tilde{\mathrm{d}}^{4}\bar{\ell}\,(\bcancel{\Box_{1,1,1,1^-}}-\cancel{\Box_{1,1,1,1}} )+\cancel{\Box_{1,1,1,1}}-\bcancel{\Box_{1,1,1,1^-}} = 0. \]

    The classically divergent terms have cancelled leaving us with only the finite terms. We now have full control over the classical limit of the one loop contribution to the real and virtual parts of the amplitude.

    5.5.4 Higher order and gravity

    The code provided is fully general in loop number and can be extended readily to higher loops, at the un-integrated level. The number of contributing diagrams quickly increases however. At two loops, we go from 5 non-scaleless diagrams to 34 (see Figure 5.8), and at three loops we have 470 diagrams (see Figure 5.9).

    G n1 n2 n1->n2 q₁ n3 n1->n3 q₂ n1->n164 p₄ n2->n3 q₄ n2->n162 p₂ n3->n2 q₃ n4 n5 n4->n5 q₁ n6 n4->n6 q₂ n4->n166 p₂ n5->n6 q₄ n5->n168 p₄ n6->n5 q₃ n7 n9 n7->n9 q₂ n7->n172 p₄ n8 n8->n7 q₁ n10 n8->n10 q₄ n9->n10 q₅ n9->n170 p₂ n10->n8 q₃ n11 n13 n11->n13 q₂ n11->n174 p₂ n12 n12->n11 q₁ n14 n12->n14 q₄ n13->n14 q₅ n13->n176 p₄ n14->n12 q₃ n15 n16 n15->n16 q₁ n17 n15->n17 q₂ n18 n16->n18 q₃ n16->n18 q₄ n17->n18 q₅ n17->n178 p₂ n18->n180 p₄ n19 n20 n19->n20 q₁ n21 n19->n21 q₂ n22 n20->n22 q₃ n20->n22 q₄ n21->n22 q₅ n21->n184 p₄ n22->n182 p₂ n23 n26 n23->n26 q₂ n23->n188 p₄ n24 n25 n24->n25 q₃ n24->n186 p₂ n25->n23 q₁ n25->n26 q₅ n26->n24 q₄ n27 n29 n27->n29 q₁ n27->n192 p₄ n28 n28->n29 q₃ n30 n28->n30 q₄ n29->n30 q₅ n29->n190 p₂ n30->n27 q₂ n31 n33 n31->n33 q₁ n31->n194 p₂ n32 n32->n33 q₃ n34 n32->n34 q₄ n33->n34 q₅ n33->n196 p₄ n34->n31 q₂ n35 n37 n35->n37 q₁ n38 n35->n38 q₂ n36 n36->n37 q₃ n36->n38 q₄ n37->n38 q₅ n37->n200 p₄ n38->n198 p₂ n39 n40 n39->n40 q₁ n39->n204 p₄ n40->n202 p₂ n41 n41->n39 q₂ n42 n41->n42 q₄ n41->n42 q₅ n42->n40 q₃ n43 n44 n43->n44 q₁ n43->n208 p₄ n46 n44->n46 q₃ n45 n45->n43 q₂ n45->n46 q₄ n45->n46 q₅ n46->n206 p₂ n47 n48 n47->n48 q₁ n47->n210 p₂ n50 n48->n50 q₃ n49 n49->n47 q₂ n49->n50 q₄ n49->n50 q₅ n50->n212 p₄ n51 n52 n51->n52 q₁ n53 n51->n53 q₂ n54 n52->n54 q₃ n53->n54 q₄ n53->n54 q₅ n53->n216 p₄ n54->n214 p₂ n55 n59 n55->n59 q₂ n55->n220 p₄ n56 n58 n56->n58 q₃ n56->n59 q₄ n57 n57->n55 q₁ n57->n58 q₆ n58->n57 q₅ n59->n218 p₂ n60 n64 n60->n64 q₂ n60->n222 p₂ n61 n63 n61->n63 q₃ n61->n64 q₄ n62 n62->n60 q₁ n62->n63 q₆ n63->n62 q₅ n64->n224 p₄ n65 n69 n65->n69 q₂ n65->n228 p₄ n66 n68 n66->n68 q₃ n66->n226 p₂ n67 n67->n68 q₅ n67->n69 q₆ n68->n65 q₁ n69->n66 q₄ n70 n73 n70->n73 q₁ n70->n232 p₄ n71 n74 n71->n74 q₄ n71->n230 p₂ n72 n72->n73 q₅ n72->n74 q₆ n73->n71 q₃ n74->n70 q₂ n75 n79 n75->n79 q₂ n75->n236 p₄ n76 n78 n76->n78 q₃ n76->n79 q₄ n77 n77->n78 q₅ n77->n79 q₆ n78->n75 q₁ n79->n234 p₂ n80 n84 n80->n84 q₂ n80->n238 p₂ n81 n83 n81->n83 q₃ n81->n84 q₄ n82 n82->n83 q₅ n82->n84 q₆ n83->n80 q₁ n84->n240 p₄ n85 n86 n85->n86 q₁ n85->n244 p₄ n86->n242 p₂ n87 n88 n87->n88 q₄ n89 n87->n89 q₅ n88->n85 q₂ n88->n89 q₆ n89->n86 q₃ n90 n91 n90->n91 q₁ n90->n248 p₄ n94 n91->n94 q₃ n92 n93 n92->n93 q₄ n92->n94 q₅ n93->n90 q₂ n93->n94 q₆ n94->n246 p₂ n95 n96 n95->n96 q₁ n95->n250 p₂ n96->n252 p₄ n97 n98 n97->n98 q₄ n99 n97->n99 q₅ n98->n95 q₂ n98->n99 q₆ n99->n96 q₃ n100 n101 n100->n101 q₁ n100->n254 p₂ n104 n101->n104 q₃ n102 n103 n102->n103 q₄ n102->n104 q₅ n103->n100 q₂ n103->n104 q₆ n104->n256 p₄ n105 n106 n105->n106 q₁ n108 n105->n108 q₂ n106->n258 p₂ n107 n109 n107->n109 q₅ n107->n260 p₄ n108->n107 q₄ n108->n109 q₆ n109->n106 q₃ n110 n111 n110->n111 q₁ n113 n110->n113 q₂ n114 n111->n114 q₃ n112 n112->n114 q₅ n112->n264 p₄ n113->n112 q₄ n113->n114 q₆ n114->n262 p₂ n115 n116 n115->n116 q₁ n118 n115->n118 q₂ n116->n268 p₄ n117 n119 n117->n119 q₅ n117->n266 p₂ n118->n117 q₄ n118->n119 q₆ n119->n116 q₃ n120 n121 n120->n121 q₁ n123 n120->n123 q₂ n124 n121->n124 q₃ n122 n122->n124 q₅ n122->n270 p₂ n123->n122 q₄ n123->n124 q₆ n124->n272 p₄ n125 n126 n125->n126 q₁ n125->n276 p₄ n126->n274 p₂ n127 n129 n127->n129 q₄ n130 n127->n130 q₅ n128 n128->n129 q₆ n128->n130 q₇ n129->n125 q₂ n130->n126 q₃ n131 n132 n131->n132 q₁ n131->n280 p₄ n136 n132->n136 q₃ n133 n135 n133->n135 q₄ n133->n278 p₂ n134 n134->n135 q₆ n134->n136 q₇ n135->n131 q₂ n136->n133 q₅ n137 n138 n137->n138 q₁ n137->n282 p₂ n142 n138->n142 q₃ n139 n141 n139->n141 q₄ n139->n284 p₄ n140 n140->n141 q₆ n140->n142 q₇ n141->n137 q₂ n142->n139 q₅ n143 n144 n143->n144 q₁ n147 n143->n147 q₂ n148 n144->n148 q₃ n145 n145->n148 q₅ n145->n288 p₄ n146 n146->n147 q₆ n146->n286 p₂ n147->n145 q₄ n148->n146 q₇ n149 n150 n149->n150 q₁ n149->n292 p₄ n150->n290 p₂ n151 n152 n151->n152 q₄ n153 n151->n153 q₅ n154 n152->n154 q₆ n153->n149 q₂ n153->n154 q₇ n154->n150 q₃ n155 n156 n155->n156 q₁ n155->n296 p₄ n160 n156->n160 q₃ n157 n158 n157->n158 q₄ n159 n157->n159 q₅ n158->n294 p₂ n159->n155 q₂ n159->n160 q₇ n160->n158 q₆ n161->n3 p₁ n163->n1 p₃ n165->n4 p₁ n167->n6 p₃ n169->n9 p₁ n171->n10 p₃ n173->n14 p₁ n175->n13 p₃ n177->n17 p₁ n179->n15 p₃ n181->n19 p₁ n183->n21 p₃ n185->n26 p₁ n187->n25 p₃ n189->n28 p₁ n191->n30 p₃ n193->n34 p₁ n195->n32 p₃ n197->n36 p₁ n199->n35 p₃ n201->n42 p₁ n203->n41 p₃ n205->n44 p₁ n207->n45 p₃ n209->n49 p₁ n211->n48 p₃ n213->n52 p₁ n215->n51 p₃ n217->n59 p₁ n219->n56 p₃ n221->n61 p₁ n223->n64 p₃ n225->n69 p₁ n227->n67 p₃ n229->n72 p₁ n231->n74 p₃ n233->n77 p₁ n235->n76 p₃ n237->n82 p₁ n239->n81 p₃ n241->n89 p₁ n243->n87 p₃ n245->n91 p₁ n247->n92 p₃ n249->n97 p₁ n251->n99 p₃ n253->n102 p₁ n255->n101 p₃ n257->n109 p₁ n259->n105 p₃ n261->n111 p₁ n263->n110 p₃ n265->n115 p₁ n267->n119 p₃ n269->n120 p₁ n271->n121 p₃ n273->n128 p₁ n275->n127 p₃ n277->n132 p₁ n279->n134 p₃ n281->n140 p₁ n283->n138 p₃ n285->n144 p₁ n287->n143 p₃ n289->n152 p₁ n291->n151 p₃ n293->n156 p₁ n295->n157 p₃

    Fig 5.8: All scaleful diagrams, in the classical limit at two loops in SQED

    Fig 5.9: All scaleful diagrams, in the classical limit at three loops in SQED

    The classically divergent term cancelations, have been explicitly derived above for the one loop case, however it is not immediately extendable to higher loops. Arguments using Cutkosky rules have been used in  [Herrmann et al. 35] to show this at two loops.

    We have up to now only considered the toy model of scalar QED, however the same techniques can be applied to gravity. In this case one considers the same scalars minimally coupled to gravity, using the Einstein-Hilbert action. Going through the same procedures as above, with more algebra, one can also obtain Feynman rules. One key difference is that the gravitons self interact, and do so for any vertex degree. Additionally, the graviton-scalar vertex can also involve any number of gravitons. Of course the highest degree vertex is always limited by the number of loops, such that in practice, one only needs to consider truncated Feynman rules. We implemented these rules in QGRAF and Julia, and we can see the resulting diagrams at one loop in Figure 5.10 only contains one new diagram, and two loops Figure 5.11, there are substantially more new diagrams.

    G n1 n2 n1->n2 q₁ n1->n2 q₂ n1->n24 p₄ n2->n22 p₂ n3 n5 n3->n5 q₂ n3->n28 p₄ n4 n4->n3 q₁ n4->n5 q₃ n5->n26 p₂ n6 n8 n6->n8 q₂ n6->n30 p₂ n7 n7->n6 q₁ n7->n8 q₃ n8->n32 p₄ n9 n11 n9->n11 q₁ n9->n36 p₄ n10 n12 n10->n12 q₂ n10->n34 p₂ n11->n12 q₃ n11->n12 q₄ n13 n14 n13->n14 q₁ n13->n40 p₄ n14->n38 p₂ n15 n15->n13 q₂ n16 n15->n16 q₄ n16->n14 q₃ n17 n19 n17->n19 q₂ n17->n44 p₄ n18 n18->n17 q₁ n20 n18->n20 q₃ n19->n20 q₄ n20->n42 p₂ n21->n2 p₁ n23->n1 p₃ n25->n5 p₁ n27->n4 p₃ n29->n7 p₁ n31->n8 p₃ n33->n10 p₁ n35->n9 p₃ n37->n16 p₁ n39->n15 p₃ n41->n19 p₁ n43->n18 p₃

    Fig 5.10: All scaleful diagrams, in the classical limit at 1 loop in GR

    G n1 n2 n1->n2 q₁ n1->n2 q₂ n1->n2 q₃ n1->n281 p₄ n2->n279 p₂ n3 n5 n3->n5 q₂ n3->n285 p₄ n4 n4->n3 q₁ n4->n5 q₃ n4->n5 q₄ n5->n283 p₂ n6 n8 n6->n8 q₂ n6->n287 p₂ n7 n7->n6 q₁ n7->n8 q₃ n7->n8 q₄ n8->n289 p₄ n9 n10 n9->n10 q₁ n11 n9->n11 q₂ n10->n11 q₃ n10->n11 q₄ n10->n293 p₄ n11->n291 p₂ n12 n13 n12->n13 q₁ n14 n12->n14 q₂ n13->n14 q₃ n13->n14 q₄ n13->n295 p₂ n14->n297 p₄ n15 n18 n15->n18 q₂ n15->n301 p₄ n16 n17 n16->n17 q₃ n16->n18 q₄ n17->n15 q₁ n17->n18 q₅ n18->n299 p₂ n19 n22 n19->n22 q₂ n19->n303 p₂ n20 n21 n20->n21 q₃ n20->n22 q₄ n21->n19 q₁ n21->n22 q₅ n22->n305 p₄ n23 n24 n23->n24 q₁ n25 n23->n25 q₂ n23->n309 p₄ n24->n25 q₄ n24->n307 p₂ n25->n24 q₃ n26 n27 n26->n27 q₁ n28 n26->n28 q₂ n26->n311 p₂ n27->n28 q₄ n27->n313 p₄ n28->n27 q₃ n29 n30 n29->n30 q₁ n29->n30 q₂ n31 n29->n31 q₃ n32 n30->n32 q₄ n31->n32 q₅ n31->n317 p₄ n32->n315 p₂ n33 n35 n33->n35 q₂ n33->n321 p₄ n34 n34->n33 q₁ n36 n34->n36 q₄ n35->n36 q₅ n35->n319 p₂ n36->n34 q₃ n37 n39 n37->n39 q₂ n37->n323 p₂ n38 n38->n37 q₁ n40 n38->n40 q₄ n39->n40 q₅ n39->n325 p₄ n40->n38 q₃ n41 n42 n41->n42 q₁ n43 n41->n43 q₂ n44 n42->n44 q₃ n42->n44 q₄ n43->n44 q₅ n43->n327 p₂ n44->n329 p₄ n45 n46 n45->n46 q₁ n47 n45->n47 q₂ n48 n46->n48 q₃ n46->n48 q₄ n47->n48 q₅ n47->n333 p₄ n48->n331 p₂ n49 n52 n49->n52 q₂ n49->n337 p₄ n50 n51 n50->n51 q₃ n50->n335 p₂ n51->n49 q₁ n51->n52 q₅ n52->n50 q₄ n53 n55 n53->n55 q₁ n53->n341 p₄ n54 n54->n55 q₃ n56 n54->n56 q₄ n55->n56 q₅ n55->n339 p₂ n56->n53 q₂ n57 n59 n57->n59 q₁ n57->n343 p₂ n58 n58->n59 q₃ n60 n58->n60 q₄ n59->n60 q₅ n59->n345 p₄ n60->n57 q₂ n61 n63 n61->n63 q₁ n64 n61->n64 q₂ n62 n62->n63 q₃ n62->n64 q₄ n63->n64 q₅ n63->n349 p₄ n64->n347 p₂ n65 n66 n65->n66 q₁ n65->n353 p₄ n66->n351 p₂ n67 n67->n65 q₂ n68 n67->n68 q₄ n67->n68 q₅ n68->n66 q₃ n69 n70 n69->n70 q₁ n69->n357 p₄ n72 n70->n72 q₃ n71 n71->n69 q₂ n71->n72 q₄ n71->n72 q₅ n72->n355 p₂ n73 n74 n73->n74 q₁ n73->n359 p₂ n76 n74->n76 q₃ n75 n75->n73 q₂ n75->n76 q₄ n75->n76 q₅ n76->n361 p₄ n77 n78 n77->n78 q₁ n79 n77->n79 q₂ n80 n78->n80 q₃ n79->n80 q₄ n79->n80 q₅ n79->n365 p₄ n80->n363 p₂ n81 n83 n81->n83 q₁ n81->n369 p₄ n82 n84 n82->n84 q₂ n82->n367 p₂ n83->n84 q₃ n83->n84 q₄ n83->n84 q₅ n85 n86 n85->n86 q₁ n85->n373 p₄ n87 n86->n87 q₂ n89 n86->n89 q₃ n88 n87->n88 q₄ n88->n87 q₅ n88->n89 q₆ n89->n371 p₂ n90 n91 n90->n91 q₁ n90->n375 p₂ n92 n91->n92 q₂ n94 n91->n94 q₃ n93 n92->n93 q₄ n93->n92 q₅ n93->n94 q₆ n94->n377 p₄ n95 n99 n95->n99 q₂ n95->n381 p₄ n96 n98 n96->n98 q₃ n96->n99 q₄ n97 n97->n95 q₁ n97->n98 q₆ n98->n97 q₅ n99->n379 p₂ n100 n104 n100->n104 q₂ n100->n383 p₂ n101 n103 n101->n103 q₃ n101->n104 q₄ n102 n102->n100 q₁ n102->n103 q₆ n103->n102 q₅ n104->n385 p₄ n105 n107 n105->n107 q₂ n105->n389 p₄ n106 n106->n105 q₁ n109 n106->n109 q₃ n108 n107->n108 q₄ n107->n108 q₅ n108->n109 q₆ n109->n387 p₂ n110 n112 n110->n112 q₂ n110->n391 p₂ n111 n111->n110 q₁ n114 n111->n114 q₃ n113 n112->n113 q₄ n112->n113 q₅ n113->n114 q₆ n114->n393 p₄ n115 n116 n115->n116 q₁ n117 n115->n117 q₂ n119 n116->n119 q₃ n116->n397 p₄ n118 n117->n118 q₄ n117->n118 q₅ n118->n119 q₆ n119->n395 p₂ n120 n121 n120->n121 q₁ n122 n120->n122 q₂ n124 n121->n124 q₃ n121->n399 p₂ n123 n122->n123 q₄ n122->n123 q₅ n123->n124 q₆ n124->n401 p₄ n125 n129 n125->n129 q₂ n125->n405 p₄ n126 n128 n126->n128 q₃ n126->n403 p₂ n127 n127->n128 q₅ n127->n129 q₆ n128->n125 q₁ n129->n126 q₄ n130 n133 n130->n133 q₁ n130->n409 p₄ n131 n134 n131->n134 q₄ n131->n407 p₂ n132 n132->n133 q₅ n132->n134 q₆ n133->n131 q₃ n134->n130 q₂ n135 n139 n135->n139 q₂ n135->n413 p₄ n136 n138 n136->n138 q₃ n136->n139 q₄ n137 n137->n138 q₅ n137->n139 q₆ n138->n135 q₁ n139->n411 p₂ n140 n144 n140->n144 q₂ n140->n415 p₂ n141 n143 n141->n143 q₃ n141->n144 q₄ n142 n142->n143 q₅ n142->n144 q₆ n143->n140 q₁ n144->n417 p₄ n145 n146 n145->n146 q₁ n145->n421 p₄ n146->n419 p₂ n147 n148 n147->n148 q₄ n149 n147->n149 q₅ n148->n145 q₂ n148->n149 q₆ n149->n146 q₃ n150 n151 n150->n151 q₁ n150->n425 p₄ n154 n151->n154 q₃ n152 n153 n152->n153 q₄ n152->n154 q₅ n153->n150 q₂ n153->n154 q₆ n154->n423 p₂ n155 n156 n155->n156 q₁ n155->n427 p₂ n156->n429 p₄ n157 n158 n157->n158 q₄ n159 n157->n159 q₅ n158->n155 q₂ n158->n159 q₆ n159->n156 q₃ n160 n161 n160->n161 q₁ n160->n431 p₂ n164 n161->n164 q₃ n162 n163 n162->n163 q₄ n162->n164 q₅ n163->n160 q₂ n163->n164 q₆ n164->n433 p₄ n165 n166 n165->n166 q₁ n168 n165->n168 q₂ n166->n435 p₂ n167 n169 n167->n169 q₅ n167->n437 p₄ n168->n167 q₄ n168->n169 q₆ n169->n166 q₃ n170 n171 n170->n171 q₁ n173 n170->n173 q₂ n174 n171->n174 q₃ n172 n172->n174 q₅ n172->n441 p₄ n173->n172 q₄ n173->n174 q₆ n174->n439 p₂ n175 n176 n175->n176 q₁ n178 n175->n178 q₂ n176->n445 p₄ n177 n179 n177->n179 q₅ n177->n443 p₂ n178->n177 q₄ n178->n179 q₆ n179->n176 q₃ n180 n181 n180->n181 q₁ n183 n180->n183 q₂ n184 n181->n184 q₃ n182 n182->n184 q₅ n182->n447 p₂ n183->n182 q₄ n183->n184 q₆ n184->n449 p₄ n185 n187 n185->n187 q₁ n185->n453 p₄ n186 n189 n186->n189 q₂ n186->n451 p₂ n188 n187->n188 q₃ n187->n189 q₄ n188->n189 q₅ n188->n189 q₆ n190 n192 n190->n192 q₁ n190->n455 p₂ n191 n194 n191->n194 q₂ n191->n457 p₄ n193 n192->n193 q₃ n192->n194 q₄ n193->n194 q₅ n193->n194 q₆ n195 n197 n195->n197 q₁ n195->n461 p₄ n196 n198 n196->n198 q₂ n196->n459 p₂ n199 n197->n199 q₃ n197->n199 q₄ n198->n199 q₅ n198->n199 q₆ n200 n202 n200->n202 q₁ n200->n465 p₄ n201 n203 n201->n203 q₂ n201->n463 p₂ n204 n202->n204 q₃ n205 n202->n205 q₄ n203->n204 q₅ n203->n205 q₆ n204->n205 q₇ n206 n208 n206->n208 q₁ n206->n469 p₄ n207 n209 n207->n209 q₂ n207->n467 p₂ n210 n208->n210 q₃ n208->n210 q₄ n211 n209->n211 q₅ n209->n211 q₆ n210->n211 q₇ n212 n214 n212->n214 q₁ n212->n473 p₄ n213 n215 n213->n215 q₂ n213->n471 p₂ n214->n215 q₃ n216 n214->n216 q₄ n217 n215->n217 q₅ n216->n217 q₆ n216->n217 q₇ n218 n219 n218->n219 q₁ n218->n477 p₄ n219->n475 p₂ n220 n222 n220->n222 q₄ n223 n220->n223 q₅ n221 n221->n222 q₆ n221->n223 q₇ n222->n218 q₂ n223->n219 q₃ n224 n225 n224->n225 q₁ n224->n481 p₄ n229 n225->n229 q₃ n226 n228 n226->n228 q₄ n226->n479 p₂ n227 n227->n228 q₆ n227->n229 q₇ n228->n224 q₂ n229->n226 q₅ n230 n231 n230->n231 q₁ n230->n483 p₂ n235 n231->n235 q₃ n232 n234 n232->n234 q₄ n232->n485 p₄ n233 n233->n234 q₆ n233->n235 q₇ n234->n230 q₂ n235->n232 q₅ n236 n237 n236->n237 q₁ n240 n236->n240 q₂ n241 n237->n241 q₃ n238 n238->n241 q₅ n238->n489 p₄ n239 n239->n240 q₆ n239->n487 p₂ n240->n238 q₄ n241->n239 q₇ n242 n243 n242->n243 q₁ n242->n493 p₄ n243->n491 p₂ n244 n245 n244->n245 q₄ n246 n244->n246 q₅ n247 n245->n247 q₆ n246->n242 q₂ n246->n247 q₇ n247->n243 q₃ n248 n249 n248->n249 q₁ n248->n497 p₄ n253 n249->n253 q₃ n250 n251 n250->n251 q₄ n252 n250->n252 q₅ n251->n495 p₂ n252->n248 q₂ n252->n253 q₇ n253->n251 q₆ n254 n255 n254->n255 q₁ n254->n501 p₄ n255->n499 p₂ n256 n256->n254 q₂ n258 n256->n258 q₄ n257 n257->n255 q₃ n259 n257->n259 q₅ n258->n259 q₆ n258->n259 q₇ n260 n261 n260->n261 q₁ n260->n505 p₄ n263 n261->n263 q₃ n262 n262->n260 q₂ n264 n262->n264 q₄ n265 n263->n265 q₅ n263->n503 p₂ n264->n265 q₆ n264->n265 q₇ n266 n267 n266->n267 q₁ n266->n507 p₂ n269 n267->n269 q₃ n268 n268->n266 q₂ n270 n268->n270 q₄ n271 n269->n271 q₅ n269->n509 p₄ n270->n271 q₆ n270->n271 q₇ n272 n273 n272->n273 q₁ n274 n272->n274 q₂ n275 n273->n275 q₃ n276 n274->n276 q₄ n274->n513 p₄ n277 n275->n277 q₅ n275->n511 p₂ n276->n277 q₆ n276->n277 q₇ n278->n2 p₁ n280->n1 p₃ n282->n5 p₁ n284->n4 p₃ n286->n7 p₁ n288->n8 p₃ n290->n11 p₁ n292->n9 p₃ n294->n12 p₁ n296->n14 p₃ n298->n18 p₁ n300->n16 p₃ n302->n20 p₁ n304->n22 p₃ n306->n25 p₁ n308->n23 p₃ n310->n26 p₁ n312->n28 p₃ n314->n32 p₁ n316->n31 p₃ n318->n35 p₁ n320->n36 p₃ n322->n40 p₁ n324->n39 p₃ n326->n43 p₁ n328->n41 p₃ n330->n45 p₁ n332->n47 p₃ n334->n52 p₁ n336->n51 p₃ n338->n54 p₁ n340->n56 p₃ n342->n60 p₁ n344->n58 p₃ n346->n62 p₁ n348->n61 p₃ n350->n68 p₁ n352->n67 p₃ n354->n70 p₁ n356->n71 p₃ n358->n75 p₁ n360->n74 p₃ n362->n78 p₁ n364->n77 p₃ n366->n82 p₁ n368->n81 p₃ n370->n89 p₁ n372->n85 p₃ n374->n90 p₁ n376->n94 p₃ n378->n99 p₁ n380->n96 p₃ n382->n101 p₁ n384->n104 p₃ n386->n109 p₁ n388->n106 p₃ n390->n111 p₁ n392->n114 p₃ n394->n119 p₁ n396->n115 p₃ n398->n120 p₁ n400->n124 p₃ n402->n129 p₁ n404->n127 p₃ n406->n132 p₁ n408->n134 p₃ n410->n137 p₁ n412->n136 p₃ n414->n142 p₁ n416->n141 p₃ n418->n149 p₁ n420->n147 p₃ n422->n151 p₁ n424->n152 p₃ n426->n157 p₁ n428->n159 p₃ n430->n162 p₁ n432->n161 p₃ n434->n169 p₁ n436->n165 p₃ n438->n171 p₁ n440->n170 p₃ n442->n175 p₁ n444->n179 p₃ n446->n180 p₁ n448->n181 p₃ n450->n186 p₁ n452->n185 p₃ n454->n190 p₁ n456->n191 p₃ n458->n196 p₁ n460->n195 p₃ n462->n201 p₁ n464->n200 p₃ n466->n207 p₁ n468->n206 p₃ n470->n213 p₁ n472->n212 p₃ n474->n221 p₁ n476->n220 p₃ n478->n225 p₁ n480->n227 p₃ n482->n233 p₁ n484->n231 p₃ n486->n237 p₁ n488->n236 p₃ n490->n245 p₁ n492->n244 p₃ n494->n249 p₁ n496->n250 p₃ n498->n257 p₁ n500->n256 p₃ n502->n261 p₁ n504->n262 p₃ n506->n268 p₁ n508->n267 p₃ n510->n273 p₁ n512->n272 p₃

    Fig 5.11: All scaleful diagrams, in the classical limit at 2 loops in GR